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Rio de Janeiro, avgust 2018 - www.icm2018.org
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ICM 2018

Fields-ove medalje:

Akshay Venkatesh (Stanford), Number theory

Peter Scholze (Bonn), Algebraic geometry

Alessio Figalli (ETH), Optimal control

Caucher Birkar (Cambridge), Algebraic geometry 2x !

Gauss-ova nagrada (za primene matematike):

David Donoho (Stanford), for his fundamental contributions to the
mathematical, statistical and computational analysis of important
problems in signal processing.-Compressed sensing

Nevenlinna medal:

Constantinos Daskalakis (MIT), Nash equilibrium- computer science,
game theory
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ICM 2018 -u nekoliko rečenica

Potpuno digitalizovano

Nista papirno (0)

=⇒ bez postera (:

U paviljonima Rio-Centro izložbenog i kongresnog centra

U organizaciji instituta IMPA

ICM 2018 YouTube-Plenarna predavanja i predavanja po pozivu-video

https://impa.br/icm2018/ - proceedings po oblastima

Tatiana Roque: IMPA???s coming of age in a context of international
reconfiguration of mathematics
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Merkle & Bogićević Statističke dubine MiSanu seminar RPM 4 / 51



ICM 2018 -u nekoliko rečenica

Potpuno digitalizovano

Nista papirno (0)

=⇒ bez postera (:

U paviljonima Rio-Centro izložbenog i kongresnog centra
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Marcelo Viana, direktor

Impa-biblioteka
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ICM2018- u vezi sa naukom o podacima

Michael Jordan (Berkeley): Dynamic, symplectic, and stochastic
perspectives on gradient-based optimization

Sanjeev Arora (MIT): The mathematics of machine learning and deep
learning

Gil Kalai (Hebrew University Jerusalem): Noise Stability, Noise
Sensitivity and the Quantum Computer Puzzle

Jonathan E. Taylor (Stanford) : A selective survey of selected
inference

Merkle & Bogićević Statističke dubine MiSanu seminar RPM 7 / 51



ICM2018- u vezi sa naukom o podacima

Michael Jordan (Berkeley): Dynamic, symplectic, and stochastic
perspectives on gradient-based optimization

Sanjeev Arora (MIT): The mathematics of machine learning and deep
learning

Gil Kalai (Hebrew University Jerusalem): Noise Stability, Noise
Sensitivity and the Quantum Computer Puzzle

Jonathan E. Taylor (Stanford) : A selective survey of selected
inference
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Nauka o podacima na ICM2018

Plenarna predavanja i predavanja po pozivu

Za razliku od sličnih zaokreta u prošlosti (Finansijska matematika,
genetika), u kojima se postojeća teorija primenjuje u novim oblastima,
ovde je slučaj da primena ide ispred teorije.

U mnogim procedurama koje se koriste u nauci o podacima nedostaju
objašnjenja- zadatak matematičara.

Tema koju ćemo predstaviti ima svoju istoriju, teoriju i motivaciju, a
uklapa se u primene sa velikim brojem visoko-dimenzionalnih podatka.
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Funkcija dubine na R
Za skup S = {x1, , . . . , xn} (podaci) dubina tačke x ∈ R u odnosu na S je

D(x) = min (#{xi ∈ S | xi ≤ x},#{xi ∈ S | xi ≥ x})

Tačke van intervala (x(1), x(n)) imaju D(x) = 0.

Preko verovatnoće: Ako je X slučajna promenljiva na skupu S:

D(x) = {min{P(X ≤ x),P(X ≥ x)

Kad x → ±∞, D(x)→ 0.

Uzoračka raspodela (ovaj termin se koristi u statistici) dodeljuje
verovatnoću 1/n svakoj tački u skupu S, računajući i ponavljanje iste
tačke.

D(x) =
1

n
min (#{xi ∈ S | xi ≤ x},#{xi ∈ S | xi ≥ x})
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Uzoračka raspodela (ovaj termin se koristi u statistici) dodeljuje
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tačke.

D(x) =
1

n
min (#{xi ∈ S | xi ≤ x},#{xi ∈ S | xi ≥ x})
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Dubina na R-nastavak

U opštem slučaju, imamo verovatnosnu meru µX na R i dubinu

D(x ;µX ) = min{µ((−∞, x ]), µ([x ,+∞))}

Osobine funkcije dubine na R:

Afina invarijantnost: D(ax + b, µaX+b) = D(x , µX ), a 6= 0

Funkcija D dostiže maksimum ≥ 1
2 u medijani (tačka ili kompaktni

interval)

D(x ;µX )→ 0 kad x → ±∞
Za svako α ∈ [0, 1

2 ] definǐsemo oblast dubine Sα = {x ∈ R|D(x) ≥ α)}.

Sα = [Kα,K1−α]

U dimenziji d ≥ 2?
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Merkle & Bogićević Statističke dubine MiSanu seminar RPM 10 / 51



Dubina na R-nastavak
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Motivacija: Parametri lokacije i njihove ocene

The standard and most common location parameter is mathematical
expectation, E (X ), which is also called a mean value. Here X is in general
a vector of dimension d. In combination with variance, it is completely
adequate within Normal (Gaussian) framework and makes mathematics
easier.
Let X1, . . . ,Xn be a sample of size n from X, and let T (n)(X1, . . . ,Xn) be
an estimator for EX. It sounds logical that any estimator of location
should be

(1) Permutation invariant: T (n)(Xπ(1), . . .Xπ(n)) = T (n)(X1, . . . ,Xn)

(2) Translation equivariant:
T (n)(X1 + b, . . . ,Xn + b) = T (n)(X1, . . . ,Xn) + b

and it is desirable that T is

(3) Affine equivariant: T (A · X + b) = A · T (X ) + b for any
non-singular d × d matrix A and an arbitrary d × 1 vector b.
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Motivacija: Robusnost i tačka preloma

Suppose that we have a sample which is contaminated with some ”bad
data”(outliers-off the model). The estimator should not change much with
a small amount of contamination. The resistance of the estimator to small
changes in the input data is called robustness. The measure of robustness
is so called breakdown point-tačka preloma. Suppose that we have a
dataset X of size n and one bad dataset Y of size m. If by appropriate
choice of Y the difference T (X ∪ Y )− T (X ) can be made as large as
desired, we say that T breaks down at X under contamination of size m.
Let

m∗ = min{m | sup#Y=m|T (X ∪ Y )− T (X )| =∞}

Breakdown point is calculated as follows (Donoho 1982)

ε∗ =
m∗

n + m∗
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Examples in dimension d = 1:

Arithmetic mean (as estimator for mathematical expectation) 1
n+1

(isto i u d ≥ 2)

Sample median (as estimator for median of a distribution) ∼ 1
2

α-trimmed mean (as estimator for mathematical expectation) ∼ α
1+α

How to extend a notion of the median to dimensions greater than 1? To
do this we have to extend a notion of deepness to higher dimensions.
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Funkcije dubine na Rd , d ≥ 1

In dimensions d ≥ 2, there is no unique natural approach to defining the
depth. It is desirable that the depth D(x) retains some properties from
d = 1, like

Depth does not depend of coordinate system (affine invariance)

Attains maximum (≥ 1
2 ?) at some point

D(x)→ 0 as ‖x‖ → ∞.

There are many different generalizations to dimensions ≥ 2. Only a few of
them satisfy all 3 conditions. In this talk we focus to the first known depth
function- Tukey’s depth.
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Tukey-eva (poluprostorna) dubina
Tukey’s depth, or halfspace depth is defined as follows.

Let H be a collection of open half spaces in Rd , d ≥ 1. For a given
probability measure µ on Rd , define

D(x, µ) = inf{µ(H) | x ∈ H ∈ H}.

The set of deepest points is usually called Tukey median. For d ≥ 2
the maximal depth is between 1/(d + 1) and 1/2 (the upper bound is
valid for finite sample in general position).

The depth region or α-level set Sα is defined as

Sα = {x ∈ Rd | D(x, µ) ≥ α}.

Examples in R2:

Triangle in R2;

Uniform distribution in a ring
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Primer: tipičan skup podataka i oblasti dubine, d = 2

-20 -10 0 10 20 30 40

-4
-2

0
2

X

Y

Iako govorimo o visoko-dimenzionalnim podatacima, svi primeri su u
d = 2, zbog teškoća u vizualizaciji kod d > 2. (Tukey!)
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Tukey’s half space depth- 2

Let H be a collection of open half spaces in Rd , d ≥ 2. For a given
probability measure µ on Rd , the Tukey depth of a point x is defined
as

D(x, µ) = inf{µ(H) | x ∈ H ∈ H}.

In the case of sample distribution, it is shown in Donoho (1982) that
the depth can be expressed via one - dimensional projections of
sample points (here X is the sample set of size n)

D(x ,X ) =
1

n
inf
‖u‖=1

#{Xi : 〈u,Xi 〉 ≤ 〈u, x〉}

This was being used as a starting point in all known algorithms other
than ours.
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Tukey’s depth - history and state of art
This is the oldest and most known depth function. The idea traces
back to Tukey (1975) and Tukey (1977), and it was first formalized in
Donoho’s Ph.D thesis (1982), in a technical report of Gasko and
Donoho (1987) and in the AS paper Donoho and Gasko (1992).
The lack of efficient programs for calculations in really high
dimensions kept this area mostly at the level of theory. Rousseeuw
and Ruts (1998) pioneered with an exact algorithm HALFMED for
Tukey median in two dimensions. Struyf and Rousseeuw (2000)
DEEPLOC algorithm calculates approximate Tukey median in higher
dimensions, with certain limitation that will be discussed later.
Random algorithm by Chan (2004) is exact, but not implemented due
to high complexity. There is a recent work of Mozharovskyi (2014,
PhD thesis) and Dyckerhoff and Mozharovskyi (2016) on an exact
algorithm, whose performances in really high dimensions have not
been investigated so far.
Aside of Tukey’s depth there are many other depth notions, see the
survey in Small (1990) and classification in Zuo and Serfling (2000).
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Naučni interes i primene

Istraživanja u oblasti funkcija dubina imaju primene u statistici -
robusne ocene parametara lokacije, klasifikacija, kategorizacija,
detetekcija podataka koji ne odgovaraju modelu (outliers), testiranje
hipoteza itd.

U računarskoj geometriji se proučavaju funkcije dubine u kontekstu
geometrije i algoritama, sa drugačijom terminologijom.

Funkcionalna analiza podataka (Horváth and Kokoszka, 2011), u
razvoju, Serfling and Wijesuriya (2016).

Tema može biti interesantna matematičarima raznih profila,
inženjerima i fizičarima.
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Merkle & Bogićević Statističke dubine MiSanu seminar RPM 19 / 51
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Oblasti dubine u Rd

The depth region or α-level set Sα is defined as

Sα = {x ∈ Rd | D(x , µ) ≥ α}.

It is well known that level sets can be represented as intersection of
half spaces of probability greater than 1− α (Donoho (1982), more
general setup in Zuo and Serfling (2000) and Merkle (2010)):

Sα =
⋂

H∈H: µ(H̄)>1−α

H̄,

For a data set with n points, we use the counting measure and so
α = k

n , k ∈ {0, 1, . . . , n}.
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Example: NY Crime data
The true depth regions for a finite data set are convex and compact sets -
polyhedra.
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Y

The benchmark data set NY CRIME with depth regions plotted by ISODEPTH.
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Izračunavanje dubine

Here we consider a sample of n points. The depth of any point can take
only n + 1 possible values, and the number of different level sets can not
be greater than n + 1. Sets Sk/n are nested and decreasing with k .

The Tukey median can be obtained as the the smallest non-empty
level set.

The depth of a point x equals to k/n if and only if x ∈ S k
n

and

x 6∈ S k+1
n

So, having the level sets, we can calculate both median and the depth
of any point. Exact calculation of level sets (depth contours) has
complexity ∼ nd . We propose a procedure that uses an approximation
to Sα in the form of a discrete set of points.

Merkle & Bogićević Statističke dubine MiSanu seminar RPM 22 / 51
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Oblasti dubine preko preseka kugli u Rd

Sets Sα can be found as well by intersection of balls (Merkle 2010):

Sα = {x : D(x) ≥ α} =
⋂

B:µ(B)>1−α

B.

This is obvious by the representation of a ball as the intersection of
tangent half spaces.

For a sample of size n, with α = k
n , the balls have to contain

n − k + 1 sample points.

First approximation-Ŝα: Chose N points to be centers of balls, and
define balls B1, . . .BN with required number of sample points. Then
define Ŝα as the intersection of these N balls.
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Second (discrete) approximation

Second approximation-ˆ̂S : Calculations of ball intersection is an
NP-problem. On the other hand, we note that it is easy to determine
whether or not any given points belongs to ball intersection Ŝα. So
we choose M random points (”artificial points”) in a convex domain

that contains all sample points. The discrete set ˆ̂S of artificial points
x such that x ∈ Ŝα is the final approximation that we use instead of
true Sα.

This novel idea leads to algorithms for median and for depth of a
given point with complexity which is linear in d .

In the sequel we will shortly present our algorithms and its behavior in
some benchmark datasets, comparison with other approximate
algorithms and analysis of errors.
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that contains all sample points. The discrete set ˆ̂S of artificial points
x such that x ∈ Ŝα is the final approximation that we use instead of
true Sα.

This novel idea leads to algorithms for median and for depth of a
given point with complexity which is linear in d .

In the sequel we will shortly present our algorithms and its behavior in
some benchmark datasets, comparison with other approximate
algorithms and analysis of errors.
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Konvergencija ˆ̂S ka S?

Za fiksirano α, pod kojim odnosom izmed̄u broja kugli (N) i broja
dodatnih tačaka (M) važi da je

lim
M,N→+∞

d(ˆ̂SM,N ,S) = 0,

gde je d Hausdorff-ova metrika?
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Jensenova nejednakost za Tukey-eve medijane

Teorema (Merkle, 2010). Neka je X slučajni vektor u Rd , i oblast
dubine Sα(X) neprazan skup. Neka je f [konveksna] realna funkcija
na Rd i Q1−α najveći kvantil reda 1− α za f (X). Tada za svaku
tačku x ∈ Sα važi da je

(∗) f (x) ≤ Q1−α(f (X))

(zašto se ovo zove Jensenova nejednakost?)

Jednakost u (∗) nastaje za f (x) = 1− D(x) Nejednakost u (∗) znači da je
Sα podskup skupa Tα = {x | f (x) ≤ c}, c = Q1−α(f (X )) -jednostavno za
izracunavanje.
Problem: Za dato X, ispitati mogućnost da se preko adekvatne funkcije f
dobije aproksimativna karakterizacija nivoa Sα.
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tačku x ∈ Sα važi da je
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Funkcije dubine preko parcijalnog ured̄enja

Neka je � relacija pacijalnog ured̄enja na R̄n. Definǐsemo

[a,b] = {x ∈ R̄d | a � x � b}

Primer: Konveksnim konusom K sa vrhom u nuli, definǐse se parcijalno
ured̄enje

x � y ⇐⇒ y − x ∈ K

[a,b] = (a + K ) ∩ (b− K ),

Preko ovih intevala, dobijamo medijanu koja ima dubinu ≥ 1/2, ali nije
afino invarijantna.

Da li se u stvarnim problemima može preko transformacija
koordinatnog sistema (data driven coordinate system) dobiti dubina
koja bi bila prihvatljiva aproksimacija afinoj invarijantnosti?

Da li je ovo jedino parcijalno ured̄enje koje dovodi do medijane sa
dubinom ≥ 1/2?
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[a,b] = {x ∈ R̄d | a � x � b}

Primer: Konveksnim konusom K sa vrhom u nuli, definǐse se parcijalno
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Example 1: Uniform distribution in a ring
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Example 2: Triangle

Triangle (red) and artificial data (green) with depth 1/3
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Example 3: Real data set - NY crime data set

NY crime data - points depths and medina: ABCDepth and DEEPLOC
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ABCDepth algoritm: median calculation

ABCDepth algorithm for finding a Tukey median is implemented in
three phases.

Phase 1, calculate distances:
I Input: Xn = (x1, x1, ..., xn) ∈ Rd×n

I Calculate Euclidian inter-distances.
I Ouput: strictly triangular matrix in a list of lists structure, where i-th

list (i = 1, ..., n − 1) contains distances di+1,j , j = 1, . . . , i .

Phase 2, construct balls:
I Input: list of lists structure with distances
I Sort distances per each point
I Output: hash map structure, key is a center of a ball, and value is a list

with sorted nearest points.

Phase 3, balls intersection, iteration phase:
I Input: hash map structure
I Intersect balls that contains bn(1− α) + 1c points.
I Output: List of level sets, S = {Sα1 ,Sα2 , ...,Sαm}, where Sαm

represents a Tukey median.

Merkle & Bogićević Statističke dubine MiSanu seminar RPM 31 / 51



ABCDepth algoritm: median calculation

ABCDepth algorithm for finding a Tukey median is implemented in
three phases.

Phase 1, calculate distances:
I Input: Xn = (x1, x1, ..., xn) ∈ Rd×n

I Calculate Euclidian inter-distances.
I Ouput: strictly triangular matrix in a list of lists structure, where i-th

list (i = 1, ..., n − 1) contains distances di+1,j , j = 1, . . . , i .

Phase 2, construct balls:
I Input: list of lists structure with distances
I Sort distances per each point
I Output: hash map structure, key is a center of a ball, and value is a list

with sorted nearest points.

Phase 3, balls intersection, iteration phase:
I Input: hash map structure
I Intersect balls that contains bn(1− α) + 1c points.
I Output: List of level sets, S = {Sα1 ,Sα2 , ...,Sαm}, where Sαm

represents a Tukey median.
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Merkle & Bogićević Statističke dubine MiSanu seminar RPM 31 / 51



ABCDepth algoritm: median calculation

ABCDepth algorithm for finding a Tukey median is implemented in
three phases.

Phase 1, calculate distances:
I Input: Xn = (x1, x1, ..., xn) ∈ Rd×n

I Calculate Euclidian inter-distances.
I Ouput: strictly triangular matrix in a list of lists structure, where i-th

list (i = 1, ..., n − 1) contains distances di+1,j , j = 1, . . . , i .

Phase 2, construct balls:
I Input: list of lists structure with distances
I Sort distances per each point
I Output: hash map structure, key is a center of a ball, and value is a list

with sorted nearest points.

Phase 3, balls intersection, iteration phase:
I Input: hash map structure
I Intersect balls that contains bn(1− α) + 1c points.
I Output: List of level sets, S = {Sα1 ,Sα2 , ...,Sαm}, where Sαm

represents a Tukey median.
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Merkle & Bogićević Statističke dubine MiSanu seminar RPM 31 / 51



ABCDepth algoritm: median calculation

ABCDepth algorithm for finding a Tukey median is implemented in
three phases.

Phase 1, calculate distances:
I Input: Xn = (x1, x1, ..., xn) ∈ Rd×n

I Calculate Euclidian inter-distances.
I Ouput: strictly triangular matrix in a list of lists structure, where i-th

list (i = 1, ..., n − 1) contains distances di+1,j , j = 1, . . . , i .

Phase 2, construct balls:
I Input: list of lists structure with distances
I Sort distances per each point
I Output: hash map structure, key is a center of a ball, and value is a list

with sorted nearest points.

Phase 3, balls intersection, iteration phase:
I Input: hash map structure
I Intersect balls that contains bn(1− α) + 1c points.
I Output: List of level sets, S = {Sα1 ,Sα2 , ...,Sαm}, where Sαm

represents a Tukey median.
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ABCDepth algoritm: pseudocode

Data: Original data, Xn = (x1, x1, ..., xn) ∈ Rd×n

Result: List of level sets, S = {Sα1 ,Sα2 , ...,Sαm}, where Sαm represents a Tukey median

1 for i ← 2 to n do
2 for j ← 1 to i − 1 do
3 Calculate Euclidian distance between point xi and point xj ;
4 Add distance to the list of lists ;
5 end
6 end

7 for i ← 1 to n do
8 Sort distances for point xi ;
9 Populate structure with balls ;

10 end

11 size = n, α1 = 1
d+1 , i = 1 ;

12 while size > 1 do
13 Sαi = {

⋂n
j Bj ,

∣∣Bj

∣∣ = bn(1− αi ) + 1c, w.r.t. to original points only } ;

14 size = |Sαi | ;

15 αi+1 = αi + 1
n ;

16 Add Sαi to S ;
17 end
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ABCDepth algoritm: complexity

ABCDepth algorithm for finding approximate Tukey median has order of O((d + k)n2 + n2 log n) time
complexity, where k is the number of iterations in the iteration phase.

Complexity of Phase 1:

I The first for loop (line 1) takes all n points, so its complexity is O(n).
I The second for loop (line 2) runs in O( n−1

2 ) time
I Calculation of Euclidian distance takes O(d) time.
I Overall complexity: O( nd(n−1)

2 ) ∼ O(dn2)

Complexity of Phase 2:

I The first for loop (line 8) runs in O(n) time.
I For sorting the distances per each point using quicksort takes

O(n log n).
I Overall complexity: O(n2 log n).

Complexity of Phase 3:

I While loop repeats k times, where 1 ≤ k ≤ m ∼ n
2

I Intersection of n balls that contains bn(1− αk) + 1c points runs in
O(n2).

I Overall complexity: O(kn2).

ABCDepth algorithm complexity: O(dn2) + O(n2 log n) + (kn2) = O((d + k)n2 + n2 log n)
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Merkle & Bogićević Statističke dubine MiSanu seminar RPM 33 / 51



ABCDepth algoritm: complexity

ABCDepth algorithm for finding approximate Tukey median has order of O((d + k)n2 + n2 log n) time
complexity, where k is the number of iterations in the iteration phase.

Complexity of Phase 1:

I The first for loop (line 1) takes all n points, so its complexity is O(n).
I The second for loop (line 2) runs in O( n−1

2 ) time
I Calculation of Euclidian distance takes O(d) time.
I Overall complexity: O( nd(n−1)

2 ) ∼ O(dn2)

Complexity of Phase 2:

I The first for loop (line 8) runs in O(n) time.
I For sorting the distances per each point using quicksort takes

O(n log n).
I Overall complexity: O(n2 log n).

Complexity of Phase 3:

I While loop repeats k times, where 1 ≤ k ≤ m ∼ n
2

I Intersection of n balls that contains bn(1− αk) + 1c points runs in
O(n2).

I Overall complexity: O(kn2).

ABCDepth algorithm complexity: O(dn2) + O(n2 log n) + (kn2) = O((d + k)n2 + n2 log n)
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Complexity analysis

When number of points increases the execution time has growth of
order n2 log n:
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Complexity analysis

The execution time grows linearly with dimensionality:
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Comparisons

Error size of approximate median points in terms of p-values P(χ2(d) ≤ ‖m̂‖2) - Sample
of size n from standard normal distribution in dimension d

n Algorithm
d

4 5 6 7 8 9 10 20 100 200

1000
DEEPLOC
ABCDEPTH

0.0021
0.0011

0.0027
0.0016

0.0039
0.0012

0.0041
0.0011

0.0045
0.0015

0.0051
0.0015

0.0056
0.0012

0.0056
0.0012

0.0612
0.0022

0.1234
0.002
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Comparisons

Compare DEEPLOC and ABCDepth execution times in seconds.

d Algorithm
n

320 640 1280 2560 3000 3500 4000 4500 5000 5500 6000 6500 7000

50
Deeploc
ABCDepth

4.43
0.15

7.15
0.63

12.65
2.86

23.87
4.95

30.93
7.27

31.79
8.65

37.66
12.51

45.35
14.18

50.72
17.51

63.13
22.18

63.75
25.86

84.13
29.24

69.61
37.34

100
Deeploc
ABCDepth

19.42
0.22

22.85
0.92

33.81
2.03

77.45
7.83

69.04
9.78

105.56
13.14

97.39
17.89

120.05
23.52

140.04
30.6

131.85
39.18

127.36
49.03

212.42
68.46

183.27
82.02

500
Deeploc
ABCDepth

-
0.693

1616.53
3.181

*
8.4

*
27.9

*
41.61

*
53.73

*
71.95

*
89.36

*
109.22

*
140.18

*
151.45

*
180.5

*
213.01

1000
Deeploc
ABCDepth

-
1.165

-
3.99

*
14.389

*
54.18

*
74.38

*
98.73

*
129.85

*
164.96

*
203.37

*
246.54

*
286.17

*
344.94

*
39.16

2000
Deeploc
ABCDepth

-
2.21

-
7.86

-
27.25

*
107.46

*
132.77

*
180.02

*
243.1

*
297.6

*
386.75

*
475.87

*
554.23

*
666.4

*
764.74
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Big Data
According to Wikipedia, the term has been coined in 1990’s, to denote data sets
with sizes beyond the ability of commonly used software tools to process data
within a tolerable time. The adjective ”Big”can be related to quantity of data
points or/and their dimensionality.
How much Big Data was big before Internet?
Collected data (human genomes, health care data...) and user generated data.

Fun facts:

I The data volumes are exploding, more data has been created in the
past two years than in the entire previous history of the human race.

I We perform 40,000 search queries every second (on Google alone).
I Facebook users send on average 31.25 million messages and view 2.77

million videos every minute.
I Facebook stores, accesses, and analyzes 30+ Petabytes of user

generated data.
User generated data is used to predict and to modify human behavior as a means
to produce revenue and market control. [Shoshana Zuboff: Big other -
surveillance capitalism and the prospects of an information civilization,
Journal of Information Technology (2015) 30, 75-89].
Healthcare could save as much as $300 billion a year ??? that???s equal to
reducing costs by $1000 a year for every man, woman, and child.
Fun or not? What should we do with Big Data?
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Big Data - Big Muzzy
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}



null

8.306962



Who is this guy?

Is he a programmer, computer scientist, statistician or data scientist?
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}


null
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Who is this guy?

Is he a programmer, computer scientist, statistician or data scientist?
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}



Who is this guy?

Is he a programmer, computer scientist, statistician or data scientist?
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}



Data Science
Data scientist before data science was popular - John W. Tukey
John W. Tukey: Am I a statistician or a data analyst? In ”Future of
Data Analysis”, AMS (1962)
John W. Tukey, ”Exploratory Data Analysis”(EDA) (1977)
In the year 1972 creates a program PRIM-9 for visualization of high
dimensional data.

For a long time I have thought I was a statistician, interested in
inferences from the particular to the general. But as I have watched
mathematical statistics evolve, I have had cause to wonder and to
doubt...All in all, I have come to feel that my central interest is in
data analysis.
Since the aim of exploratory data analysis is to learn what seems to
be, it should be no surprise that pictures play a vital role in doing it
well. There is nothing better than a picture for making you think of
questions you had forgotten to ask (even mentally).
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John Wilder Tukey (1915-2000)

Born 1915, B.Sc. in Chemistry at Brown University 1936, M.Sc
Chemistry 1937

Ph.D Mathematics (topology) 1939, Princeton. His dissertation was
included in Halmos’ list of most significant mathematical
contributions in USA. Tukey’s partial order is still discussed in
contemporary literature (2017).
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Data Science

Data science is derived from data analysis and computer science +
necessary domain knowledge.

”Data scientiest (n.) : Person who is better at statistics than any
software engineer and better at software engineering than any
statistician.”

”What is a Data Scientist? An analyst who lives in California.”

Jack of all trades, master on none...

Still better than master of one.
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Application: ABCD Clustering algorithm - Analyze
the data

The initial and the most important task in every data science work is
to understand the data and to understand the problem that should be
solved.
We analyze acoustic data set that contains probability density
functions of frequency dependent angular distributions for external
noise incident energies.
Noise incident energies are taken from l = 12 locations, Li , i = 1...l
and each location is described with n = 10 continuous functions at a
certain frequency band.
Each of those continuous functions are discretized into m = 91 noise
incidence angles, so each Li can be represented as a matrix m × n

Li =


x1,1 x1,2 · · · x1,m

x2,1 x2,2 · · · x2,m
...

...
. . .

...
xn,1 xn,2 · · · xn,m


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ABCD Clustering algorithm - Analyze the data
Or:

Li = {Xj}, j = 1, ..,m,Xj = {xk,j}, k = 1, .., n

Alternatively, we consider location, Li as a set of m functions:

Li = {f1(fk ,Θ1), f2(fk ,Θ2), ..., fm(fk ,Θm)},k = 1, .., n

Three functions for j = 18 are shown, i.e. for three randomly picked locations we show
their f18(fk ,Θ18) function. The red and green functions have similar y values, unlike the
blue function. We conclude that two locations are similar if they have as many similar
functions as possible.
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ABCD Clustering algorithm - Analyze the data

Define the problem and the aim:

Each location represents a different type of a street - some streets are
wide, some of them are narrow, streets are bordered with high-rise or
low-rise buildings, parking lots or trains can be close to the streets,
streets are more or less busy etc. Every of those parameters has an
influence on noise incidence energies.

The aim is to cluster those locations, i.e. to find the way the make
clusters that relies on locations’ similarities. Based on locations
similarities, a proper facade noise isolation can be found for each
location type (cluster).
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ABCD Clustering algorithm - Dimensionality
reduction and median calculation

ABCD Clustering algorithm uses median value to get the distances
between data points and median point, i.e. each multidimensional
point is represented by its distance from median value and the
multidimensional data set is reduced to one dimension.
The approach of dimensionality reduction is based on ABCDepth
algorithm described in the previous section.
We calculate median for Xj vectors from each Li matrix:

medj({L1(Xj), L2(Xj), .., Li (Xj)}), i = 1, ..12 and j = 1, ...,m.

For each Xj from Li matrix, the algorithm calculates the distance
between Xj and median medj :

dist(Li (Xj),medj) = dij .

That way, we have m one-dimensional data points, instead of m
points of dimension n, and each Xj is represented with its distance:

Li = {di1 , di2 , ..., dij}, wherej = 1, ..,m.
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ABCD Clustering algorithm - Clustering of distances

ABCD Clustering algorithm uses MultiKMeansPlusPlusClusterer
function to cluster distances calculated in the previous step.

Iteratively, algorithm groups distances dij from each matrix Li . The
number of iterations is equal to m.

At the end of each iteration, there are maximal l (number of
locations) clusters, in the case if each location belongs to the
different cluster.

In other words, algorithm groups {d11 , d21 , ..., d121} distances in the
first iteration, {d12 , d22 , ..., d122} distances in the second iteration, etc.

In ABCD Clustering algorithms, clusters obtained from described
process are called: clusters of type C .
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Merkle & Bogićević Statističke dubine MiSanu seminar RPM 48 / 51



ABCD Clustering algorithm - Clustering of distances

ABCD Clustering algorithm uses MultiKMeansPlusPlusClusterer
function to cluster distances calculated in the previous step.

Iteratively, algorithm groups distances dij from each matrix Li . The
number of iterations is equal to m.

At the end of each iteration, there are maximal l (number of
locations) clusters, in the case if each location belongs to the
different cluster.

In other words, algorithm groups {d11 , d21 , ..., d121} distances in the
first iteration, {d12 , d22 , ..., d122} distances in the second iteration, etc.

In ABCD Clustering algorithms, clusters obtained from described
process are called: clusters of type C .
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ABCD Clustering algorithm - Clustering of distances

After m iterations, the algorithm counts how many times location Li
appeared in the same cluster of type C with some other location.

ABCD Clustering does re-clustering of locations (those new clusters
are called clusters of type C ′) in the following way: location, Lx ,
x ∈ {1...12} is placed in a new cluster of type C ′ with some other
location Ly , y ∈ {1...12} \ x iff Lx appeared most times with location
Ly in clusters of type C .

In that case, we say that Lx and Ly are in relation:

LxρLy

.

Clusters of type C ′ are in a form of connected components of a
weighted graph whose reachability is an equivalence relation.
According to its transitive property:

LxρLy ) ∧ (LyρLz) =⇒ LxρLz .
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ABCD Clustering algorithm - Results

Each connected component represent one cluster of type C ′.
Nodes represent locations.

Extraverted edges shows how many times locations Lx and Ly appeared with each other in
clusters of type C . Locations M and MV appeared the most (28) times with each other in
clusters of type C

Directed edges from location Lx to location Ly show how many times location Lx
appeared in the same cluster of type C with location Ly . Lcation E appeared the most
(23) times with location M.

Due to the transitive property explained above, locations M, MV and E make one cluster
of type C ′.
An application of ABCD Clustering algorithm with detailed data set description can be
found in Miloŝ Bjelić’s PhD thesis, Analiza ugaone raspodele incidentne energije spoljaŝnje
buke primenom mikrofonskog niza, section 5.4.
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Further work

Generalize ABCDepth Clustering algorithm (unsupervised)

Introduce ABCDepth Classification algorithm (supervised)

Median-based dimensionality reduction

Outlier detection
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Merkle & Bogićević Statističke dubine MiSanu seminar RPM 51 / 51



Further work

Generalize ABCDepth Clustering algorithm (unsupervised)

Introduce ABCDepth Classification algorithm (supervised)

Median-based dimensionality reduction

Outlier detection
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