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ABSTRACT

SUPERPOSITIONS OF ORNSTEIN-UHLENBECK TYPE PROCESSES:
INTERMITTENCY AND APPLICATIONS TO FINANCE

By

Irena Tesnjak

Ornstein-Uhlenbeck (OU) type processes driven by Levy noise are useful in modeling the

activity time in the fractal activity time geometric Brownian motion (FATGBM) model for

a risky asset. Discrete superpositions of these processes can be constructed to incorporate

non-Gaussian marginal distributions and long or short range dependence. While the partial

sums of finite superpositions of OU type processes obey the central limit theorem, we show

that the partial sums of a large class of infinite long range dependent superpositions are

intermittent. We discuss the property of intermittency and behavior of the cumulants for

the long-range dependent superpositions of OU type processes. In addition we show an

application of finite superpositions in modeling financial time series and superiority of the

model at hand compared to the Black-Scholes model when modeling log-returns.
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Introduction

Fisher Black, Myron Scholes and Robert C. Merton have developed the Geometric Brow-

nian motion (GBM) to model risky asset evolution and by provided the finance community

with an explicit method for pricing a European option, see [12,56].

Although, the classical Black-Scholes GBM model is undoubtedly, the most renowned

and widely accepted model within both academic and practitioners community worldwide,

the fit of the model has been questioned continuously over the last decade. Recently, a large

body if literature has shown the departure of the model from the real financial data, see for

instance Heyde and Liu (2001) [39] and Heyde (2009) [38], also Cont (2001) and Granger

(2005) [16, 35] who thoroughly explored the characteristics of the empirical log-returns for

the financial time-series. The ’stylized features’ of the log-returns included heavier-tailed

and higher peaked distributions for the log-returns, uncorrelated and stationary returns and

the dependence of squared and absolute returns (both short and long range dependence),

which contradicted the GBM model.

A number of models that incorporate non-Gaussian distributions and/or dependence in

log returns have been proposed (see, [52], [51], [37], [36], [10], and many others) including

the class of stochastic volatility models of Barndorff-Nielsen and Shephard, see [8]. The

focus is motivated by fractal activity time GBM models (FATGBM) that, along with other
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stochastic volatility models, address the stylized features. FATGBMs were first introduced in

Heyde (1999) [37] and further developed for the Variance-Gamma, Normal-Inverse Gaussian

and student distributions in [24–26, 36, 48, 49]. Heyde’s FATGBM model belongs to the

class of subordinator type models, where a random time change (activity time process) with

preferable characteristics, is used instead of the regular deterministic time to account for the

stylized features of the log-returns.

Several versions of Heyde’s model have the capacity to capture the stylized features of the

financial data if a suitable activity time is being chosen. As suggested by Heyde himself [37],

if the activity time process Tt is chosen such that its increments exhibit dependence and has

heavier tails than Gaussian, then these features are going to be inherited by the resulting

model. Furthermore, there is a strong empirical evidence (Heyde and Liu (2001) [39]) that

the activity time Tt should be asymptotically self-similar.

In this thesis we focus on FATGBM models with a specific time change, namely, the

models that use superpositions of Ornstein-Uhlenbeck type processes (supOU) to construct

the increments of the activity time, elaborated in [48, 49]. The finite or infinite supOU

processes were first introduced by Bardnorff-Nielsen and other colaborators, see [3,4,8]. The

motivation behind this approach lies in the fact that both finite and infinite supOU exibit

the properties that an ’ideal’ activity time should have, as mentioned in Heyde (1999) [37]

and established further in the literature. In addition to allowing for non-Gaussian marginals,

the supOU process have very flexible correlation structure (summation of exponential terms)

that allows for easy modeling of short and long range dependence. In addition, these models

are analytically very tractable (their marginal distributions are known), which is a very

useful property because implementation of these models is straightforward.

It can be shown that the partial sums of finite supOU processes have Gaussian limiting
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distribution, hence they are asymptotically self-similar. In this thesis, the limiting properties

of the infinite supOU process are investigated. We found that the partial sums of the

infinite superpositions are intermittent, which in turn implies unusual cumulant behavior

which may preclude central limit theorem (CLT) type of results. Therefore, any use of the

infinite superposition processes would be very difficult from the application standpoint, since

testing efficiency of estimators, constructing confidence intervals or performing hypothesis

tests would be challenging. Another aspect from the finance standpoint is that, as a result

of our findings, use of the infinite LRD supOU process as an activity time would not address

the challenge of building a FATGBM model that incorporates long-range dependence of the

log returns and the asymptotic self-similarity of the activity time.

The thesis is organized as follows. The first chapter includes the preliminary material

introducing the superpositions of Ornstein-Uhlenbeck type processes. The second chapter

presents new theoretical results. The third chapter focuses on applications of finite super-

positions of the OU type processes for building tractable FATGBMs.
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Chapter 1

Overview of the Ornstein-Uhlenbeck

(OU) type processes and their

superpositions

1.1 Preliminaries

This section contains standard terminology, definitions, and theorems that will be used

throughout. Let (Ω,F , P ) be a probability space and letX : Ω→ R be a F/B(R)-measurable

real-valued mapping or simply a random variable. Here B(R) is the sigma-algebra of Borel

sets on R. A probability measure induced by X, denoted as FX(B) = P (X ∈ B) = P ({ω :

X(ω) ∈ B}), for all B ∈ B(R), will be referred to as distribution of X, or sometimes a law

of X. In addition, whenever two random variables, say X, Y on R, not necessarily defined

on the same probability space, have identical distributions, i.e. FX = FY , we will use the

following notation X
D
= Y .

The convolution µ of two distributions µ1 and µ2 on R, denoted by µ = µ1 ∗ µ2 is a

distribution defined by µ(B) =
∫ ∫

R×R 1B(x + y)µ1(dx)µ2(dy), B ∈ B(R). Note, in case

X1 ∼ µ1 and X2 ∼ µ2 are two independent random variables on R, then their sum X1 +X2

has distribution µ1 ∗ µ2.

4



A characteristic function of a random variable X with a distribution µ, usually denoted

by ϕX(z), or sometimes µ̂(z), is given by the following expression:

ϕX(z) = µ̂(z) = EeizX , z ∈ R.

A cumulant (generating) function of a random variable X will be denoted by:

κX(z) = log EeizX , z ∈ R.

Assuming it exists, one can define the m-th cumulant of X, denoted as κ
(m)
X , for m ∈ N,

using the m-th derivative of the cumulant function κX , evaluated at zero, written correctly

below,

κ
(m)
X = (−i)m dm

dzm
κX(z)

∣∣∣
z=0

In this context, we say that a characteristic function κX(.) is analytic around the origin, if

and only if, at any point in the neighborhood of the origin, its Taylor series converges to the

value of the function, i.e. if for any z around the origin, the following is true,

κX(z) =
∞∑
m=1

(iz)m

m!
κ

(m)
X .

In this paragraph, we will briefly explain regularly and slowly varying functions, which

is an essential tool when dealing with heavy tails, long range dependence, and domains

of attraction. Intuitively, regularly varying functions, in the long run, behave like power

functions, which in case of regularly varying distributions means that they have tails that

are approximately power-law, like Pareto distribution for example.
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Definition 1.1.1. It is said that a measurable function U : R+ → R+ is regularly varying

at ∞ with an index ρ ∈ R, if for any scale x > 0 the following holds,

limt→∞
U(tx)

U(t)
= xρ,

where the index ρ is called the exponent of variation.

Note that regularly varying functions are asymptotically scale invariant functions.

Definition 1.1.2. A measurable function L : R+ → R+ is slowly varying at ∞ if for any

scale x > 0 the following holds,

limt→∞
L(tx)

L(t)
= 1,

i.e. it is regularly varying function with ρ = 0.

Notice that if U ∈ RVρ then U(x)/xρ ∈ RV0, which in turn means that any ρ-regularly

varying function can be represented as U(x) = xρL(x). Simple examples of slowly varying

function is logx, log(logx) and for the regularly varying are power functions. On the other

hand, an exponential function ex is an example of not regularly varying function.

In the next paragraph we are going to define notions related to stochastic processes and

families of random variables. From here throughout, a probability space (Ω,F , P ) is fixed

and random variables are defined on it. We will start with defining the family of finite-

dimensional distributions and continue with stochastic processes, see below.

Definition 1.1.3. For any fixed integer n, and any choice of 0 ≤ t1 < t2 < ... < tn, the joint

distribution P [X(t1) ∈ B1, X(t2) ∈ B2, ..., X(tn) ∈ Bn] determines a probability measure on

B((R)n). The family of probability measures over all possible choices of n and {ti}ni=1’s, is

called the system of finite-dimensional distributions of a process {Xt}.
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Definition 1.1.4. Let Xj be a random variable with values in Rdj , where j = 1, ..., n. One

says that the finite family of random variables {Xt1 , ..., Xtn} is independent if for every

Bj ∈ B(Rdj ), j = 1, ..., n, the joint probability can be decomposed as following:

P (X1 ∈ B1, ..., Xn ∈ Bn) =
n∏
i=1

P (Xi ∈ Bi).

Note that an infinite family of random variables is independent, if every finite subfamily

of it is independent.

Definition 1.1.5 (Modification). A stochastic process {Yt} is said to be a modification of

a stochastic process {Xt} if they are almost surely equal at each time point t, i.e. if for all

t ∈ [0,∞), P (Xt = Yt) = 1.

Definition 1.1.6. Two stochastic process {Xt} and {Yt}, not necessarily defined on the same

probability space, are said to be equal in law (in distribution), denoted as {Xt}
D
= {Yt}, if the

systems of their finite-dimensional distributions are equal. Note that, from here throughout

whenever we talk about equality in distribution of two stochastic processes we mean equality

of their finite dimensional distributions.

Definition 1.1.7 (Stationarity).

(i) The stochastic process {Xt} is said to be stationary in a narrow sense if the system of its

finite-dimensional distributions is shift invariant, i.e. if ∀h ≥ 0, {Xt}t≥0
D
= {Xt+h}t≥0.

(ii) The stochastic process {Xt} is said to be stationary in a wide sense (weakly), also called

second order stationary, if, one- and two-dimensional distributions of the process {Xt} are

shift invariant.

An important concept involving stochastic processes, either continuous or discrete, is
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memory of the process, as t → ∞. Intuitively, depending on the behavior of the process,

its short or long term memory property will allow one to extrapolate across time scales and

deduce long time behavior from short time behavior.

The most obvious way to measure the length of memory in a stochastic process that has

second-order moments is by looking at the rate at which its correlations decay with time-lag.

Hence, consider a weakly or second-order stationary time series {Xn}n∈Z, assuming in

addition, the existence of the second moment. Let’s first define measures of dependence in

time series, that is let RX(k) and ρX(k) be autocovariance function (ACVF) and autocor-

relation function (ACF) for the process {Xn}. For any time points t, k ∈ Z, we define the

following,

RX(k) = Cov(X0, Xk) = Cov(Xt, Xt+k), (1.1)

and also,

ρX(k) =
γ(k)

γ(0)
=
Cov(X0, Xk)

V ar(X0)
. (1.2)

Now, we can give definition of the notions of short and long range dependence as follows,

Definition 1.1.8. A second-order stationary time series {Xn}n∈Z with finite second moment

is called short range dependent (SRD, in short) if,

+∞∑
k=−∞

|RX(k)| < ∞. (1.3)

and long rnage dependent (LRD in short) if,

+∞∑
k=−∞

|RX(k)| = ∞. (1.4)
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Note, that short range dependence is also referred to as short memory or weakly depen-

dent and similarly, long range dependence is often referred to as long memory or strongly

dependent series. Also, in case of the continuous time stochastic process the above series

will be replaced by integrals over the time axis, t ∈ R.

1.2 Levy processes

The Levy processes are named after the famous French mathematician Paul Lévy, whose

contribution, although not alone in it, played an important role in understanding and char-

acterizing the processes with stationary and independent increments.

Definition 1.2.1 (Lévy process). Let {Zt}t≥0 be a stochastic process defined on a probability

space (Ω,F , P ). We say that a real-valued stochastic process Zt is a Lévy process in law if

the following conditions are satisfied:

(i) It starts at zero almost surely, i.e. Z0 = 0 a.s.

(ii) Zt has independent increments, i.e. for any n ≥ 1 and any choice of 0 ≤ t0 < ... < tn,≤

the family of random variables {Z(tk)− Z(tk−1)}nk=1 is independent.

(iii) Zt has stationary increments (temporal homogeneity),i.e. for any s ∈ [0,∞), the two

processes are equal in law, {Zt − Zs}t≥0
D
= {Zt−s}t≥0. In other words, the distribution of

Zt+h − Zt doesn’t depend on specific time point t, only on the time increment h.

(iv) Zt is stochastically continuous, or in other words if the following is true,

for any t ∈ [0,∞) and ε > 0, lims→tP (|Zs − Zt| > ε) = 0.

The above statements from (i)-(iv) define the Levy process in law (in distribution), and

the Kolmogorov extension theorem guarantees the existence of a stochastic process with a
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given system of finite-dimensional distributions.

Regarding the sample path properties of the Levy process, it can be shown that (i)-(iv)

imply the existence of a modification that is right-continuous with left limits, or continue á

droite, limite á gauche, in French, denoted as cádlág, see Sato (1999) [63]. Hence, for every

Levy process in law, there exist Ω0 ∈ F , P (Ω0) = 1, such that ∀ω ∈ Ω0, Xt(ω) has cadlag

sample paths. We will refer to this cádlág modification as a Levy process throughout. In

addition to the right-continuity of their sample paths one can also show that they have at

most countable number of random jump discontinuities occurring at random times, on each

finite time interval.

Even though, above we defined a Levy process only on the positive real axis {Zt}t≥0,

it can be extended it to the whole set of real numbers, i.e. {Zt}t∈R, provided that on the

negative time axes t < 0, process is defined as follows,

Definition 1.2.2. Let {Zt}t≥0 be a Levy processes with E[eizZt ] = etκ0(z). Denote {Z̃t}t≥0

as an independent copy of {Zt}t≥0. Then the Levy process on the negative time axis t < 0,

is defined as follows, for any t < 0, Zt
D
= −Z̃(−t)−.

Below we listed some important properties of the Levy process.

(i) The stationary and independent increments property imply that a Levy process is

a Markov process, more precisely a temporally homogeneous Markov process. Com-

bined with the almost sure right continuity of sample paths, one may show that Levy

processes are strong Markov processes as well.

(ii) They form a special subclass of semimartingales.

(iii) They are ’analogs’ of random walks in continuous time.
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The next section addresses the specific type of marginal distributions that Levy processes

can have by introducing a class of infinitely divisible distributions.

1.3 Infinitely divisible distributions

1.3.1 Infinite divisibility and the Levy-Khintchine representation

In this section we will define infinitely divisible distributions, give their representation

and main properties. We will also briefly explain their correspondence to the Lévy processes

in distribution. As standard notation we will write: µn = µ∗ ...∗µ as the n-fold convolution

of a probability measure µ with itself.

Definition 1.3.1. A probability measure µ on R is said to be infinitely divisible (ID) if, for

any positive integer n, there exist a probability measure µn on R such that: µ = µ n
n .

Since the convolution of measures corresponds to the product of characteristic functions

or sum of independent random variables, we can therefore say that probability measure µ is

infinitely divisible (ID) if and only if, for each n, the n-th root of the characteristic function µ̂

is a also a characteristic function of some probability measure: µ̂(z) = (µ̂n)n. Equivalently,

one can also say that a random variable X is infinitely divisible (ID) iff for any n ∈ N there

exists an i.i.d sequence of random variables Yn such that: X
D
= Y

(n)
1 + ...+ Y

(n)
n .

As it turns out, all infinitely divisible distributions have a specific form of their char-

acteristic function which is very well known representation, named the Lévy-Khintchine

representation or the Lévy-Khintchine formula, see below.

Theorem 1.3.1 (Lévy-Khintchine). If µ is an infinitely divisible distribution on R, then
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there exists a unique triplet (A, ν, γ) (referred to as the generating triplet) such that:

µ̂(z) = eκ(z) = exp{−1

2
Az2 + iγz +

∫
R

(
eizx − 1− izx1[−1,1](x)

)
ν(dx)}, z ∈ R. (1.5)

where γ ∈ R, A ≥ 0 and ν is the Lévy measure, that is, a σ-finite Borel measure on R such

that

ν ({0}) = 0,

∫
R

(1 ∧ x2)ν (dx) <∞. (1.6)

Conversely, given a generating triplet (A, ν, γ), there exists an infinitely divisible distribution

µ on R whose characteristic function is given by (1.5). The exponent κ(z) = log(µ̂(z)), in

the above formula, is often referred to as the Levy exponent.

From the above theorem, one can conclude that the generating triplet (A, ν, γ) uniquely

determines the infinitely divisible random variable X with law µ. The parameters A, ν, γ are

called, respectively, the Gaussian term, the Lévy measure of µ, and the drift.

Bellow we have provided some examples of well known distributions that are elements of

the class of infinitely divisible distributions and some that are not. Note, in order to show

that a specific distribution belongs to the class of infinitely divisible distributions, one can

either show that its characteristic function is of the Levy-Khinchine form (1.5) or directly

use the definition 1.3.1 and suggest how to re-parameterize the form of its characteristic

function in order to get the n-th root.

Example 1.3.1.

(i) Let X be a Gaussian random variable: X ∼ N (γ,A). It is infinitely divisible since its

12



characteristic function is of the form,

ϕX(z) = en ( iz
γ
n−

1
2
A2
n z2) =

(
ϕXn(z)

)n

, where the n-th root is Xn ∼ N (γn ,
A2
n ). On the other hand, one can also see that ϕX(z)

is of the Levy-Khinchine form (1.5), with generating triplet (A, 0, γ), where the variance of

a normal variable is related to the Gaussian term A, a mean is related to the drift term γ,

while the Levy measure is zero, ν = 0. Note here, the Levy measure is zero, when and only

when the distribution is Gaussian.

(ii) Let a Gamma distribution be defined by the following density,

Γ(α, β) ∼ αβ

Γ(β)
xβ−1 e−αx 1 [0,∞)(x), α > 0, β > 0.

Similarly, it belongs to the class of infinitely divisible distributions. While the infinite divis-

ibility can be easily seen by suggesting the n-th root of its characteristic function, i.e.

ϕΓ(α,β)(z) =

(
1− iz

α

)−β
=

(
(1− iz

α
)−β/n

)n
=
(
ϕΓ(α,β/n)(z)

)n
,

the Levy-Khinchine form of its characteristic function is not as straightforward to find. It

can be shown that it is given by the following expression,

ϕΓ(α,β)(z) = eβ
∫∞
0 (eizx−1)(e−αx/x)dx.

From the above representation one can see that the generating triplet is of the form, A =

0, γ =
∫ 1

0 xν(dx), and ν(dx) = (eαx/x)dx and that Levy measure has density with respect

13



to Lebesgue measure. In addition, since an exponential is a special case of the Gamma

distribution, it is also infinitely divisible.

(iii) Following the similar procedure as above, one can see that the Poisson distribution is

infinitely divisible as well, i.e.

ϕP (λ)(z) = e−λ(1−eiz) =

(
e−λ/n (1−eiz)

)n
=
(
ϕP (λ/n)(z)

)n
.

After rewriting the above characteristic function, one can see that the Levy-Khinchine expo-

nent is of the form:

κP (λ)(z) = λ

∫
R
{eizx − 1− izx1[−1,1](x)} δ1(dx),

and hence the generating triplet for Poisson distribution is given by, (0, λ δ1,
∫ 1
−1 x δ1(dx) ),

where δ1 denotes the Dirac measure supported on {1}.

(iv) The compound Poisson distribution is given as:
∑N
i=1 ξi ∼ µ, where N is a Poisson ran-

dom variable with parameter λ, {ξi}i≥1 an i.i.d sequence of random variables with common

law F , and it is assumed to be independent of N . Its characteristic function is of the form

µ̂(z) = eλ
∫
R(eizx−1)F (dx) = eλ(F̂ (z)−1) =

(
eλ/n(F̂ (z)−1)

)n
.

Hence, it belongs to the class of infinitely divisible distributions with the generating triplet,

(0, λF (dx), λ
∫ 1
−1 xF (dx) ).

(v) Distribution of a Levy process {Zt}t≥0, at any time t, is an infinitely divisible distribution,

14



see below. Trivially we have that for any n ≥ 1 and t ∈ [0,∞),

Zt = (Ztn − Ztn−1
) + ...+ (Zt1 − Zt0),

where tk = kt/n, k = 0, 1, ..., n and tn ≡ t. Stationarity and independence of the Levy

increments yields that, {Ztk −Ztk−1
}nk=0 is a sequence of i.i.d random variables, hence, for

a fixed time t, the random variable Zt is infinitely divisible.

(vi) In general it turns out that, any distribution with bounded support (except δ-distributions)

is not infinitely divisible. Hence, uniform and Binomial distribution are the examples of

distributions that are not infinitely divisible.

Remark 1.3.1. Some other continuous distributions that are infinitely divisible are: Cauchy,

one-sided strictly stable distributions of index 1/2, while other discrete infinitely divisible

distributions are geometric, negative binomial, etc... In the examples given above one can

easily find the n-th root of the characteristic function, but there are many other distributions

whose infinite divisibility is much harder to prove, like for example: Student’s t-distribution,

Pareto, F-distribution, Gumbel, Weibull, log-normal, logistic distribution, and some others,

see [63]

For the sake of completeness, some interesting properties of infinitely divisible distri-

butions are given in the form of lemmas below, see Sato (1999) [63][chapter 2] for more

details.

Lemma 1.3.2.

(i) If µ is infinitely divisible distribution then its characteristic function µ̂(z) has no zeros,

i.e. µ̂(z) 6= 0 for any z ∈ R .
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(ii) If µ1 and µ2 are infinitely divisible then their convolution, µ1 ∗ µ2 is infinitely divisible.

(iii) If {µk}k≥0 is a sequence of infinitely divisible distributions and {µk} → µ, as k → ∞,

then the limiting distribution µ is infinitely divisible.

(iv) If µ is infinitely divisible then, for any t ∈ [0,∞), µt is both, well-defined and infinitely

divisible. Note µ0 = δ0.

(v) Every infinitely divisible distribution is the weak limit of a sequence of compound Poisson

distributions.

1.3.2 The correspondence between infinitely divisible distributions

and Levy processes in law

Let us now present the details of a well known fact that there is one-to-one correspondence

between the class of infinitely divisible distributions and Levy processes in law. We will

explain this relationship in a very simple manner and then we’ll state the theorem.

From the example 1.3.1 we already know that the Levy process Zt is infinitely divisible

for any fixed t ≥ 0, which means that for any integer n, we can decompose Zt as a sum

of n i.i.d reparametrized distributions. Hence, the more interesting question is if we can

decompose it as sum of t , i.i.d. Z1-distributions, where t is a real number, i.e. if and when

the following is true, for any Levy process {Zt}, and for any time t ∈ R+, t ≥ 0,

ϕZt(z) = E[eizZt ] = etκ(z) = (ϕZ1)t, κ(z) = log(E[eizZ1 ]).

From the following relationship, Zt = (Ztn − Ztn−1
) + ... + (Zt1 − Zt0), by taking specific
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integer valued times, t = m,n = m and t = m,n = n, one can easily get,

(ϕZ1
)m = ϕZm = (ϕZm/n

(z))n.

For any n,m ∈ N and hence for any rational number, the following equation holds,

ϕZm/n
= (ϕZ1)

m
n .

If we simply choose the sequence of rationals {rn} such that rn → t, together with the

fact that the Levy process is stochastically continuous we get that, Zrn → Zt in probability,

which implies convergence in distribution. This in turn implies, Zt
D
= (Z1)t and ϕZt = etκ(z),

for any real time t ≥ 0 and not only for integer or rational.

From the above discussion it is clear that each Levy process can be associated with an

infinitely divisible distribution, but what is not straightforward is, whether given an infinitely

divisible distribution µ, one can construct a Levy process Zt, such that Z1
D
= µ. This question

is answered in the theorem below, see Sato 1999, see [63] for more details. Intuitively, starting

with an infinitely divisible distribution one needs to construct a corresponding Levy process

in law, i.e. one needs to suggest an appropriate system of finite dimensional distributions

such that it is well defined (satisfy Kolmogorov consistency theorem), Z1
D
= µ, and have

properties of the Levy process. If one shows that the proposed system of f.d.d. is well

defined, then one only needs to show that the system is a Levy process in law. See the

theorem below,

Theorem 1.3.3. Let {Zt}t≥0 be a real-valued Levy process in law and denote Z1
D
= µ.

(i) Then for every t ∈ [0,∞), Zt is infinitely divisible and Zt
D
= (Z1)t

D
= µt.
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(ii) Conversely, if µ is an infinitely divisible distribution on R, then there is a real-valued

Levy process in law, denoted with {Zt}t≥0, such that Z1
D
= µ.

(iii) If {Zt} and {Z ′t} are two real-valued Levy process in law such that Z1
D
= Z ′1 then the

processes are identical in law, i.e. {Zt}t≥0
D
= {Z ′t}t≥0.

Note, µ is said to be an infinitely divisible distribution corresponding to the Levy process

in law {Zt}, where Z1
D
= µ; conversely, the process {Zt} is said to be the Levy process in law

corresponding to the infinitely divisible distribution µ. A generating triplet for the infinitely

divisible distribution µ, denoted as (A, γ, ν), is also called the Levy generating triplet.

Remark 1.3.2. Even though the stationary and independent increments property of the Levy

process {Zt} is enough to claim that its marginal distributions are infinitely divisible, it is

not enough in order to prove the property (i). One still needs the stochastic continuity.

Below we give couple of well known examples of the Levy processes. We are going to

assume that (Ω,F , P ) is a probability space and that a given process is defined on it.

Example 1.3.2.

(i) A standard Brownian motion is a classical example of the Levy process with normal

marginal distributions, i.e. a real-valued process with stationary and independent incre-

ments, starts at zero a.s., has a modification with continuous sample paths, and at each time

t > 0, process Bt has normal distribution with variance t, or Bt ∼ N (0, t). Note also that a

linear Brownian motion or a BM with drift, i.e. B̃t ≡ Bt + γt is a Levy process too.

(ii) A continuous time and a non-negative integer-valued process {Nt}t≥0 is said to be a

Poisson process with intensity λ > 0, if it is a Levy process and, in addition, at each time

t > 0, Nt has a Poisson distribution with parameter λt. Since it is a Levy process, the

characteristic function is of the Levy-Khintchine form, E e izNt = e−λt ( 1−eiz).

18



Remark 1.3.3. Note, another way of defining the Poisson is as a counting process. In fact,

it is the only process that is both, Levy and counting at the same time. The Poisson counts

the arrivals of randomly occurring events or events with exponential inter-arrival times in the

time interval [0, t], i.e. Nt =
∑
n≥1 1 t≥Tn , where Tn is a random walk with exponentially

distributed waiting times, Tn =
∑n
i=1 τi, τi ∼ exp(λ). Since it is a Levy process, the sample

paths of Poisson are a.s. right continuous by the definition, but some other path properties

come more intuitively when using the second definition. Hence, from here we may also

conclude that the trajectories of a Poisson are always increasing and piece-wise constant

functions, with jumps of size 1 only, where jumps occur whenever the random events occur.

Note, also that a Poisson process itself cannot be used to model asset prices because the

jump size is always equal to one, which is way too restrictive, but it can be used as building

block to construct more advanced financial models that exhibit jumps.

(iii) Let λ > 0 and let F be a distribution on R such that F{0} = 0. A real-valued and

continuous time process is a compound Poisson process {Zt}t≥0 associated with λ and F ,

if it is a Levy process and at each time t > 0 it has a compound Poisson distribution,

E e izZt = e−λt ( 1−F̂ (z)), z ∈ R.

Another way of defining a compound Poisson process with a jump intensity λ and a jump

size distribution F is as a random walk, Zt =
∑Nt
i=1 ξi, where {ξi}i≥1 is a sequence of

independent random variables with law F and Nt is a Poisson process with with intensity λ t

and independent of the given sequence {ξi}i≥1. One can see that, the jumps arrive randomly

according to a Poisson process and the size of the jumps is also random, with a specified

probability distribution.

Remark 1.3.4. Similarly as a Poisson process, a compound Poisson process is a piece-wise
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constant process which jumps at jump times of a standard Poisson process, but as opposed

to a Poisson which has fixed jump length of one, the jump sizes of a compound Poisson are

i.i.d. random variables with a given law F .

(iv) As already explained, gamma distribution is infinitely divisible, hence by the theorem

1.3.3 there exist a levy process Zt with gamma marginal distributions, such that Z1
D
= Γ(α, β)

and Zt
D
= (Γ(α, β)) t. Since Gamma distribution is closed under convolution in the first

parameter (skewness parameter) we get, Zt
D
= Γ(tα, β), i.e. the characteristic function of the

gamma process is of the form, E [e izZt ] = (1− iz/β)−tα.

Remark 1.3.5. Stationarity, independent increments property and the fact increments (Z(1))

are gamma distributed imply that the process is a.s. strictly increasing. Even though it seems

similar to a compound Poisson where the jump distribution F is concentrated on the positive

real line (0,∞), there are two main differences. First, Levy measure of a Gamma process has

infinite total mass unlike the Levy measure of a compound Poisson, which is necessarily finite

and equal to the arrival rate of jumps 1. Second, while a compound Poisson with positive

jumps does have an a.s. non-decreasing paths, it does not have paths that are almost surely

strictly increasing 2.

Remark 1.3.6. Note that the Poisson and the compound Poisson process with strictly pos-

itive increments are the most well-known non-negative Levy processes. As mentioned their

paths are non-decreasing piece-wise constant functions where jumps happen rather rarely.

Consequently, their increments are often exactly equal to zero, even when measured over

large time intervals. This feature is fundamentally different from the Gamma process since

its increments are strictly positive regardless of how much time has elapsed. This means that

1Frequently referred to as jump intensity.
2Levy processes whose paths are almost surely non-decreasing are called subordinators.
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at every time point this process jumps, hence it will have infinity number of small jumps

in any finite time interval. The Levy processes that exhibit this feature are said to be of

infinite activity (jump intensity). The path of these processes have rough upward trend with

occasional large jumps and intuitively one can conclude that the paths are not continuous

anywhere.

From the Definition 1.2.1 alone, it is difficult to see, just how rich the class of Levy

processes really is. In general, there are many processes that satisfy the definition of the Levy

process and on the first encounter they can seem considerably different from one another.

For example, firstly, the Brownian motion has an a.s. continuous sample paths whereas the

Poisson process is a jump process only. Secondly, the Brownian motion is a.s. nowhere

differentiable, i.e. its paths are of unbounded variation over finite time horizons, while the

Poisson process is a non-decreasing process and thus has paths of bounded variation over

finite time horizons. Still, they both belong to a one large class of processes which makes

modeling with Levy processes very flexible and suitable for various situations.

Beside their flexibility with the sample path properties which allows for both continuous

or jump sample paths, they have also larger class of possible marginal distributions, as

mentioned previously, class of infinitely divisible distributions. Therefore, the probability

models driven by Levy processes are applicable to many different situations. One of the

drawbacks when modeling directly with Levy is their independent increments property, which

is not true in many real life situations. Hence, if one wants to model phenomena that has

correlation structure present when modeling squared or absolute increments, Levy processes

would not be suitable. So, from the modeling and application perspective, because of their

correlation structure, the OU and OU type processes, see the section 1.4, allow for more

flexibility when fitting the data. These can be also used to define more advanced models,

21



referred to in literature as superpositions of OU type processes, see the section 1.5. They

were first introduced by Barndorff-Nielsen and other colaborators, see [3, 4, 8] and the class

of superspositions is richer than standard OU type processes.

1.3.3 Self-decomposable distributions

In this section we will define a class of self-decomposable (SD) distributions, which, due

to the specific form of their Levy measure, is a subclass of infinitely divisible distributions.

We will digress here and try to explain some applicational motivation behind the processes

with self-decomposable distributions. The most standard models for option pricing (Black

and Scholes, 1973 [12]) usually assume that continuously compounded returns are normally

distributed. The primary motivation behind this assumption is the central limit theorem

which says that if the price returns are realized as sum of large number of independent

influences, properly scaled, then returns should be normally distributed. Now, the fact that

distribution of the price returns for time-series and option data is not normal has lead many

scientist to research into jump-diffusion models, stochastic volatility models, pure-jump Levy

processes and some other. So, the question is, are there some alternatives to the Gaussian

distribution as a limiting law, i.e. can we construct models that are limits of properly scaled

partial sums, where the scaling function is not necessarily
√
n ?3 The answer is yes there is a

class of distributions with these properties, so-called laws of class L, which were first defined

by Khintchine (1938) and Levy (1937) as limiting distributions for sums of n independent

variables that are centered and scaled by functions of n, and this class is identical to the class

of self-decomposable distributions. Examples would be Normal and stable distributions.

Regardless, the self-decomposable laws represent an important generalization of Gaussian

3There is no economic motivation for the scaling function to be
√
n over any other function of n.
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and stable laws as they describe limit laws with more general scaling constants than only

1√
n

. This flexibility is important in applications when the independent sources of randomness

being summed are of different orders of magnitude. Now that we explained why these models

are interesting from finance/modeling perspective let’s proceed with the definition.

Definition 1.3.2. A random variable X is self-decomposable if, for all c ∈ (0, 1) , its char-

acteristic function can be decomposed/factorized as, ϕX(z) = ϕcX(z) × ϕc(z), for some

characteristic function ϕc(z), z ∈ R.

Intuitively, a random variable is self-decomposable if it can be decomposed into a sum of

scaled down version of itself and an independent residual term, i.e. if for every c ∈ (0, 1) ,

there exists an independent random variable Xc, such that: X
D
= cX +Xc.

Remark 1.3.7. To summarize, the self-decomposable laws arise naturally as limiting distri-

butions for certain generalizations of the central limit problem. More generally, the class of

all infinitely divisible distributions coincides with those distributions that arise as limits of

row sums of uniformly asymptotically negligible triangular arrays of random variables.

There is another important characterization of self-decomposable distributions and that

is through a special form of their Lévy measure. In particular, since self-decomposable

distributions are a subclass of infinitely divisible distributions, their characteristic function

is already of the Lévy-Khintchine form, but it can be shown that their Lévy measure has a

density with respect to the Lebesgue measure, see Sato (1999), [63][corolary 15.11], i.e. their

Lévy measure is of the following form:

ν (dx) =
k(x)

|x|
dx, (1.7)
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for some non-negative function k(.) : R → R, that is increasing on (−∞, 0) and decreasing

on (0,∞) and also satisfies the integrability condition:
∫∞
−∞(1 ∧ x2)

k(x)
|x| dx <∞.

Another interesting property of self-decomposable distributions is that their densities are

unimodal, see Yamazato 1978 [68] or Sato 1999 [63]. The proof that every density in the

class of L or self-decomposable class is unimodal is non-trivial and an interested reader may

refer to the references suggested above. This property can be helpful in determining if some

distribution is not self-decomposable. Below is the example where a distribution is infinitely

divisible but not self-decomposable.

Example 1.3.3.

(i) Any stable distribution on R is self-decomposable. For example, let’s look at the one-sided

α-stable law, for 0 < α < 2. Levy generating triplet is of the form (0, ν, γ), where γ ∈ R and

Levy measure is of the form,

ν(dy) =


Cαy−α−1dy, y > 0

0, y < 0.

Directly from the above definition, one can see that the given Levy measure has density with

respect to Lebesgue, hence it is self-decomposable. In addition, the characteristic function of

a stable distribution is given by the following formula,

ν̂(z) =


e−C Γ(1−α) (−iz)α , for 0 < α < 1,

e
C

Γ(2−α)
(α−1)

(−iz)α
, for 1 < α < 2.

(ii) As mentioned previously, the Levy-Khinchine exponent of the Gamma distribution is given
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by the following expression,

ϕΓ(α,β)(z) = e
β

(∫ ∞
0

(eizx − 1)(e−αx/x)dx

)
.

From the above representation one can see that the Levy measure has density with respect to

the Lebesgue measure, ν(dx) = (e−αx/x)dx, hence it is self-decomposable. In addition, since

exponential is a special case of Gamma distribution it is self-decomposable as well.

(iii) Other well known and self-decomposable distributions are double-exponential (Laplacian),

log-normal, Pareto, t-distribution, F-distribution, etc...

(iv) An interesting example of a distribution that is infinitely divisible but not self-decomposable

can be constructed in the following way. Take sum of independent normal and poisson

distribution. The convolution is going to be infinitely divisible but not self-decomposable

since for different parameters λ the resulting distribution can be multi-modal, while the self-

decomposable distributions are unimodal. Another way to construct a continuous distribution

that is infinitely divisible but not self-decomposable is via Levy-Khintchine representation

while making sure that the Levy measure is not absolutely continuous with respect to the

Lebesgue.

In the next section one will see a different view of self-decomposable distributions and

that is as a stationary distribution of a class of Markov processes called Ornstein-Uhlenbeck

type. This interpretation of a self-decomposable distribution gives another representation of

its Levy measure as opposed to the equation (1.7), given above.
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1.4 Ornstein-Uhlenbeck type processes

Named after Leonard Ornstein and George Eugene Uhlenbeck, real-valued Ornstein-

Uhlenbeck (OU) process {Yt}t≥0, induced by a Brownian motion Bt, is an a.s. and unique

solution to the following stochastic differential equation (SDE), commonly referred to as the

Langevin SDE,

d Yt = −λYt d t+ dBt.

A standard Ornstein-Uhlenbeck process has many useful modeling properties, for example

a fact that it is a continuous time analogue of discrete AR(1) process, relatively straightfor-

ward to simulate, it has a mean reversion property (converges towards its long-term mean,

as t → ∞). However, a potential drawback of modeling via standard OU process is that it

can fit only data that exhibit normality. Their exponentially decaying dependence structure

is not very flexible either, so there is an obvious need for a model that improves on these

features.

In this thesis our focus will be on the processes of Ornstein-Uhlenbeck type (OU type for

short) which are analogues of the above mentioned ordinary OU processes where a Brownian

motion part is replaced by a general Levy process {Zt}t≥0,

d Yt = −λYt d t+ dZt.

As we will see later, the class of possible marginal distributions for the OU type processes

coincides with the class of self-decomposable distributions, which includes Gamma, Inverse

Gaussian, Normal Inverse Gaussian, and many other distributions useful for applications

in finance. Self-decomposable distributions are specifically useful when modeling data that
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exhibits heavier tails and higher peaks than normal (frequently referred to as Leptokurtic

distributions). Hence, the OU type models are more flexible when fitting empirical data.

Here we summarize some of the available defintions and results from the Sato’s and

Rocha-Arteaga’s book [60]. In this chapter, we give a layout for the construction of an

Ornstein-Uhlenbeck type process, which is a necessary building block for the upcoming

chapters. As suggested in [60][Chapter 2], in order to construct an Ornstein-Uhlenbeck type

process, first a stochastic integral of a deterministic integrand with respect to a Levy process

{Zt} needs to be defined, which is done in the subsection 1.4.1 by following the reference

provided. Afterwards, a stochastic integral of a step function on a bounded time interval is

defined. Due to the fact that any measurable function can be approximated with a sequence

of simple functions, the Levy integral can then be defined as a limit in probability of the

previously constructed simple integrals. The Ornstein-Uhlenbeck type process is afterwards

introduced as a stochastic integral with respect to a Levy process, {Zt}. Now as suggested

in [60,63], since the Levy integral is well defined, the existence and uniqueness of an Ornstein-

Uhlenbeck type process is established as an almost sure, strong and unique solution to the

Langevin integral equation, see the section 1.4.2.

The section 1.4.3 has important results on the stationarity of the Ornstein-Uhlenbeck

type process and its Markovian property, see Sato’s book [63] and [1,60] for more details. It

is well known that the ordinary OU process driven by the Brownian motion has a limiting

stationary distribution as t → ∞, which is Gaussian. On the other hand, the OU type

process doesn’t necessarily have a limiting stationary distribution, since it is driven by a

general Levy noise that tends to have more erratic behavior due to jumps. In this section we

will give the conditions on the Levy measure related to the driving Levy process, under which

processes of OU type have stationary limiting distributions. After establishing the limiting
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stationary distribution of an OU type process, we will briefly explain a correspondence

between self-decomposable distributions and stationary processes of OU type.

For more properties of OU type processes and their generalizations see Mandrekar &

Rudiger (2007) [54], Barndorff-Nielsen (2001) [4], Barndorff-Nielsen & Stelzer (2011) [9].

1.4.1 Stochastic integral with respect to the Levy process

In this section we summarize the approach to the definition of the stochastic integral of

a bounded measurable function defined on a bounded closed interval on R with respect to

a given Levy process, see the details in [60]. Note that this is a special case of integration

with respect to semi-martingale. In addition, the expression for the characteristic function

of the stochastic integral with respect to a given Levy process, is provided, refer to the

same [1, 60, 63]. It turns out that its characteristic function depends on the characteristic

function of the driving Levy process.

We will start by defining a step function first.

Definition 1.4.1. Let 0 ≤ t0 < t1 < ∞. We say that a function f , defined on the interval

[t0, t1], is a step function if, for the finite number of points t0 = s0 < s1 < ... < sn = t1 and

for some aj ∈ R, j = 1, ..., n, it can be written in the following form,

f(s) =
n∑
j=1

aj1[sj−1,sj ](s). (1.8)

As we explained, first we will define the stochastic integral for a given step function f ,

defined on a bounded closed interval [t0, t1], with respect to a given Levy process:

Definition 1.4.2. Let {Zt}t≥0 be a Levy process on R, with Z1
D
= µ0 uniquely determined
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by a generating triplet of µ0 ∼ (A0, ν0, γ0) and the characteristic function of the form,

ϕZt(z) = E[eizZt ] = etκ0(z), (1.9)

where κ0(z) is the Levy exponent of µ̂0 and it is given by,

κ0(z) = −1

2
A0z

2 + iγ0z +

∫
R

(
eizx − 1− izx1[−1,1](x)

)
ν0(dx). (1.10)

Then the Levy integral for a given step function f is defined as,

∫ t1

t0

f(s)dZs =
n∑
j=1

aj
(
Zsj − Zsj−1

)
. (1.11)

Following the steps in [60], we present with properties of the above defined Levy integral

of a simple function.

Proposition 1.4.1. The distribution of the random variable Y ≡
∫ t1
t0
f(s)dZs is infinitely

divisible for any step function f , and its characteristic function is given in the form below:

ϕY (z) = E{exp

(
iz

∫ t1

t0

f(s) dZs

)
} = exp{

∫ t1

t0

κ0 (zf(s)) ds} (1.12)

Proof. By the independent and stationary increment property of the Levy process combined
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with the expression (1.9) we get,

E{exp

(
iz

∫ t1

t0

f(s)dZs

)
} =

n∏
j=1

E {eiz aj(Zsj−Zsj−1)}

=
n∏
j=1

e
(sj−sj−1)κ0 (ajz)

= exp

 n∑
j=1

(sj − sj−1)κ0 (ajz)


= exp

∫ t1

t0

κ0 (zf(s)) ds

The infinite divisibility of the Levy integral in (1.11) is a direct consequence of its definition.

In the subsequent steps we still follow the reference [60], hence we define the Levy integral

for a larger class of functions, real-valued bounded measurable functions on [t0, t1]

Proposition 1.4.2. Let f(s) be a real-valued bounded measurable function on [t0, t1], such

that there are uniformly bounded step functions {fn(s)}n≥1 on [t0, t1] satisfying fn → f .

Then, the Levy integral
∫

1 [t0,t1] fn dZs converges to a real-valued random variable Y in

probability. The law of Y is infinitely divisible and its characteristic function is given by:

EeizY = exp

(∫ t1

t0

κ0 (zf(s)) ds

)
. (1.13)

Note, the limit Y does not depend on the choice of fn up to a probability zero.

Proof. As suggested in the reference [60], we start with lemma from the Sato’s book [63].

Even though the characteristic function is uniformly continuous, it is not straightforward to

show that the Levy characteristic exponent is continuous. The Lemma 7.6 (pg 33), in Sato
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1999, says that any continuous function ϕ(z) : R → C that is ϕ(0) = 1 and ϕ(z) 6= 0 for

any z has a unique and continuous Levy exponent κ(z) : R → C such that κ(0) = 0 and

eκ (z) = ϕ(z). Now, due to the continuity of the Levy exponent κ0 in (1.10), one gets the

convergence of κ0 ( (fn(s)− fm(s) ) z)→ 0 for almost every s, as n,m→∞. Since the step

functions are assumed to be uniformly bounded and the Levy exponent κ0 is continuous, the

Dominated Convergence theorem implies,

∫ t1

t0

κ0( (fn(s)− fm(s) )z) ds→ 0, as n,m→∞.

By (1.12),

E e
iz
∫ t1
t0

( fn(s)−fm(s) ) dZs
= e

∫ t1
t0

κ0( z(fn(s)−fm(s) ) ) ds
→ 1, (1.14)

which implies convergence to zero in probability of the above sequence, i.e.
∫ t1
t0

( fn(s) −

fm(s) ) dZs
P→ 0. This means that the sequence of integrals is Cauchy in probability, and

since the metric of convergence in probability is complete one may conclude that, there

exists a random variable Y which is limit in probability of the sequence of random variables

defining the Levy integral
∫ t1
t0
fn(s)dZs.

The law of Y is infinitely divisible because the lemma 1.3.2 implies that the weak limit

of infinitely divisible sequence of distributions is infinitely divisible. Since the sequence of

simple Levy integrals
∫ t1
t0
fn(s)dZs is infinitely divisible, see the proposition 1.4.1 and the

rest follows.

It is straightforward to get the convergence in distribution for the sequence of Levy

integrals. The continuity of the Levy exponent κ0 implies, κ0(fn(s)z)
n→∞→ κ0(f(s)z), and

the DCT,
∫ t1
t0
κ0( fn(s) z) ds =

∑n
j=1 κ0 (ajz)(sj − sj−1) →

∫ t1
t0
κ0( f(s) z) ds. Finally the
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proposition 1.4.1 implies, as n→∞,

Ee
iz
∫ t1
t0

fn(s) dZs → e

∫ t1
t0

κ0 ( f(s) z) ds

The existence of the limit in probability, the above convergence of the characteristic functions

combined with the continuity theorem give the distributional form of the limit, i.e. the above

equation (1.13).

Uniqueness follows from the equation (1.14), with two approximating sequences given as

fn(s), gn(s) where both are uniformly bounded and converging a.s. to f . So, the following

holds,
∫ t1
t0

fn(s) dZs −
∫ t1
t0

gn(s) dZs → 0 in probability.

Remark 1.4.1. It is explained in [60] that by using Lusin’s theorem it is possible to con-

struct a sequence of uniformly bounded step functions such that if f is a real-valued bounded

measurable function on [t0, t1], then Y =
∫ t1
t0
f(s)dZs is definable and (1.4.2) holds.

Definition 1.4.3. The real-valued random variable Y in the proposition above is the stochas-

tic integral of f with respect to the Levy process {Zt} and it is denoted by,

Y ≡
∫ t1

t0

f(s)dZs

Proposition 1.4.3. If f is a real-valued bounded measurable function on [t0, t1], then Y =∫ t1
t0
f(s)dZs is definable and (1.4.2) holds.

Note, the above proposition shows the existence of the Levy integral on the bounded

time interval [t0, t1]. Provided that the assumptions in the proposition 1.4.1 hold, couple

of important properties of the Levy integrals will hold true, see the references for more

details [1, 60]. See below.
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Proposition 1.4.4 (Some properties of the Levy integrals).

(i) For any Levy integral of the type, defined in 1.4.3, the following holds,

∫ t1

t0

f(s)dZs+h
D
=

∫ t1

t0

f(s)dZs.

The above statement is true due to the stationarity of Levy increments and due to the fact that

convergence in probability implies convergence in distribution. In addition, if the distribution

of
∫∞

0 f(s)dZs exists, the following property holds as well,
∫∞

0 f(s)dZ(s+h)
D
=
∫∞

0 f(s)dZs.

(ii) Provided that a Levy process on the negative time-axis is defined as, {Z ′t : t < 0} D= {−Zt :

t ≥ 0}, where Z ′t is independent of Zt, the following property is true,

∫ t

0
e−λ(t−s)dZs

D
=

∫ t

0
e−λsdZs.

Again, it holds because of the stationary increment of the Levy process and the fact that,∫ t
0 e

λsdZ−s
D
= −

∫ 0
t e

λsdZs as a consequence of stationarity of the Levy increments.

Remark 1.4.2. As soon as we start working with the integrals on the unbounded intervals,

eg.
∫∞
t0
f(s)dZs we will need to strengthen the above assumptions in order to get a limiting

distribution of
∫ t1
t0
f(s)dZs, as t1 → ∞. In the section 1.4.3.1, we will see that existence

of a stationary OU type process is related to the existence of the limiting distribution of an

unbounded Levy integral, hence a stronger set of assumptions will be established.

Note that, an additive process is a stochastically continuous process with independent

increments that starts at zero a.s. It will be used in the next two proposition. Below we

included two propositions, from [60] for the sake of completeness. Even though, we are not

going to give a detailed proof of the existence of an OU type process, in order to define it,
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the proposition of Fubini type involving the stochastic integrals is a necessary step so we

included it here.

Proposition 1.4.5. Let f(s) be a locally bounded and measurable function on the interval

s ∈ [0,∞). Then there exist an additive real-valued process {Yt} such that, for every t > 0

the following is true,

P

(
Yt =

∫ t

0
f(s)dZs

)
= 1.

Note, since it is understood that
∫ t

0 f(s)dZs is a modification of Yt, then the integral of the

following form,
∫ t1
t0
f(s)dZs is a modification of Yt1 − Yt0 .

Similarly, for the sake of completeness, we included the proposition that shows that Levy

integral has a modification that is an additive process.

Proposition 1.4.6. Let f(s) and g(s) be bounded measurable functions on [t0, t1]. Then

∫ t1

t0

g(s)ds

∫ s

t0

f(u)dZu =

∫ t1

t0

f(u)dZu

∫ t1

u
g(s)ds, a.s. (1.15)

1.4.2 Existence and uniqueness of the OU type process

Given a real-valued Levy process {Zt}t≥0 with a generating triplet (A0, ν0, γ0), satisfying

the Levy-Khintchine formula (1.5), a real constant λ > 0 and a starting point x ∈ R, we

define a new process {Yt}t≥0 such that it is a.s. right continuous with left limits and it a.s.

satisfies the integral equation given below:

Yt(ω) = x+ Zt(ω)− λ
∫ t

0
Ys(ω)ds, for t ≥ 0 (1.16)

Theorem 1.4.7. Considering the equation (1.16) as an equation for Yt(ω), there exist an
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almost sure and unique solution Yt(ω), and it is given by:

Yt(ω) = xe−λt + e−λt
∫ t

0
eλsdZs(ω). (1.17)

In general, the solution proposed in (1.17) is well defined if the integral with respect

to measure induced by the Levy process is well defined, see the section 1.4.1. Hence, the

integral equation (1.16) has an a.s. strong and unique solution regardless of the type of the

Levy process being used as a driving noise.

Remark 1.4.3. In many applications, the driving Levy process is an increasing, positive Levy

processes, frequently referred to as a subordinator. It can be shown that the sample functions

of these processes are almost surely, of bounded variation on any finite time interval4, hence

the above integral is well defined. So, in case of Levy being increasing (or non-decreasing)

we can re-write the above integral equation (1.16) as a path-wise differential equation, which

if viewed as a function of t and ω is considered stochastic.

The OU type process can be viewed as an a.s. and unique solution to a stochastic

differential equation (SDE) given below:

dYt(ω) = −λYt(ω)dt+ dZt(ω), t ≥ 0. (1.18)

Since all the necessary elements were previously defined one can proceed with the defi-

nition of an Ornstein-Uhlenbeck type (or OU type) process.

Definition 1.4.4 (Ornstein-Uhlenbeck type process). Let λ > 0, M be a real valued random

variable, and Zt being a Levy process on R generated by the triple (A0, ν0, γ0), such that

4This means that the last integral in (1.17) is a path-wise Lebesgue-Stieltjes integral in s.
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M and {Zt}t≥0 are independent. The process that is an a.s. and unique solution to the

equation,

Yt = M + Zt − λ
∫ t

0
Ys ds, for t ≥ 0 (1.19)

is called the Ornstein-Uhlenbeck type process generated by Zt and λ, starting from Y0 = M .

One can also refer to it as the Ornstein-Uhlenbeck type process generated by the quadruple

(A0, ν0, γ0, λ). Equivalently, the appropriate stochastic differential equation is of the form,

dYt = −λYt dt + dZt, Y0 = M. (1.20)

Note that, the above process Zt is often referred to as the background driving Levy process

(or BDLP for short) and that the parameter λ is usually referred to as the mean reversion

parameter. Intuitively, the parameter λ controls how fast the process Yt converges to its long

term mean. Moreover, it controls the memory of the process Yt through the autocorrelation

function, see the section (2.3.4).

Remark 1.4.4. Frequently in the literature, the BDLP of the given OU type process is

rescaled from Zt to Zλt, hence the above stochastic differential equation (1.20) becomes:

dYt = −λYt dt + dZλt. The given scaling is such that the marginal distributions of OU type

process are free of the parameter λ. This way when fitting a distribution to the data at hand

there will be one parameter less to estimate. The parameter λ is usually estimated from the

empirical correlation function.
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1.4.3 Properties of the the OU type processes

1.4.3.1 The stationary OU type process

Recall that a process is stationary if and only if its family of f.d.d. is shift invariant, or

in other words if for any u ≥ 0, the following is true: {Yt}t≥0
D
= {Yt+u}t≥0.

The Levy processes usually do not have limiting distributions as t → ∞, except for a

case of a zero process. On the other hand, since the OU type processes have drift toward

the origin with the magnitude that is proportional to the distance from the origin, they may

have a limit if certain assumptions are satisfied, in which case stationarity will hold.

One way to show the stationarity is to directly write down its characteristic function and

see what are the conditions under which the limiting distribution exists, i.e. the distribution

as t→∞. See below for more details, Barndorff (1998), see [5]. Another approach, proposed

by Sato (1999) [63] is to explore Markovian properties of an OU type process and to find the

necessary conditions under which the limiting distribution of a Markov process exists and is

stationary.

To simplify, we will only explain the first approach and explore the stationarity of a

marginal distribution of the OU type process, similarly as in Barndorff (1998), see [5]. The

proposition below reveals simple, yet important property of the OU type process, which will

be used throughout, for more details refer to [60].

Proposition 1.4.8. Let {Yt}t≥0 be an Ornstein-Uhlenbeck type process given by the formula,

Yt = e−λt Y0 +
∫ t

0 e
−λ(t−s) dZs, λ > 0, then the following is true:

Yt+u = e−λuYt +

∫ u

0
e−λ(u−s)dZs, u ≥ 0. (1.21)
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Proof.

Yt+u = e−λ(t+u)Y0 +

∫ t+u

0
e−λ(t+u−s)dZs

= e−λ(t+u)Y0 + e−λ(t+u)
(∫ t

0
eλsdZs +

∫ t+u

t
eλsdZs

)
= e−λu

{
e−λtY0 +

∫ t

0
e−λ(t−s)dZs

}
+ e−λ(t+u)

∫ u

0
eλ(s′+t)dZ(s′+t)

D
= e−λuYt + e−λu

∫ u

0
eλs
′
dZs′ .

The last step is true due to the fact that Levy process Zt has stationary increments, i.e.

dZ(s′+t)
D
= dZs′ which implies

∫ u
0 eλs

′
dZ(s′+t)

D
=
∫ u

0 eλs
′
dZs′ .

Remark 1.4.5. In the proof above, Y0 and both integrals defined on disjoint intervals
∫ t

0

and
∫ t+u
t are independent due to the independent increment property of the Levy process Zt.

Hence, we can conclude that Yt and
∫ u

0 eλs
′
dZs′ are independent.

Let’s continue with the stationarity of an OU type process Yt. The necessary and sufficient

condition for the stationarity of a marginal distribution is that, for any u > 0, ϕYt(z) =

ϕYt+u(z). If we denote ϕ
Y

(c)
t

(z) as the characteristic function of a new random variable

Y
(c)
t = E[eiz

∫ u
0 e−λ(u−s)dZs ], which represents the integral term in the equation (1.21),

along with the fact that Y
(c)
t and Yt are independent (remark 1.4.5), we get the following

formula,

ϕYt(z) = ϕYt+u(z) = ϕYt(e
−λuz)ϕ

Y
(c)
t

(z). (1.22)
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The proposition 1.21 implies,

ϕ
Y

(c)
t

(z) = E[eiz
∫ u
0 e−λ(u−s)dZs ] = exp

(∫ u

0
κZ1

(
z e−λ(u−s)

)
ds

)
, (1.23)

where κZ1(z) as the Levy exponent of the BDLP Zt, given by ϕZ1
(z) = eκ(z).

Remark 1.4.6. Since the above equation (1.22) holds for all u > 0, it follows it will hold for

all c = e−λu, c ∈ (0, 1). Hence, one may conclude that if the stationarity of the marginal dis-

tribution for Yt holds, as in (1.22), then its marginal distribution must be self-decomposable.

We are still interested in finding the condition under which the OU type process is

stationary. So, if we denote ω = z e−λ(u−s), then it follows from (1.22) and (1.23),

ϕYt(z) = ϕYt(e
−λuz) exp

(
λ−1

∫ z

z e−λu
κZ1(ω)ω−1dω

)
.

Since any characteristic function is continuous at zero and so is ϕYt(z), if we let u → ∞ it

follows that,

ϕYt(z) = lim
u→∞

exp

(
λ−1

∫ z

z e−λu
κZ1(ω)ω−1dω

)
= exp

(
λ−1

∫ z

0
κZ1(ω)ω−1dω

)
. (1.24)

Remark 1.4.7. It is important to notice that the equation (1.24), provided above, tells us

how to choose the distribution of Z1, or its Levy exponent κZ1, in order to get a particular

marginal distribution of the OU type process Yt, with characteristic function ϕYt.

Let’s continue with the stationarity of an OU type process. In order that it holds, the

right-hand side of the equation (1.24) needs to hold, i.e. the Levy exponent κZ1 must
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necessarily satisfy the following condition:

∫ z

0
|κZ1(ω)|ω−1dω < ∞, for z > 0. (1.25)

According to Wolfe (1982) the above condition is equivalent to the condition provided

below,

E (log+|Z1|) = E (0 ∨ log |Z1|) < ∞, (1.26)

Jurek and Mason (1993), stated in the theorem 3.6.6. that the above condition is equivalent

to the condition given in Sato (1999), namely,

∫
|x|>2

log |x| ν(dx) < ∞, (1.27)

where ν is the Levy measure of the background driving Levy process (BDLP) Zt.

We have discussed the condition that allows an OU type process to be stationary. A

Markov process will be stationary if its transition function has a stationary limiting dis-

tribution, as t → ∞. Since an OU type process is a Markov process, we can explore the

self-decomposability of its marginals and its stationarity through exploring if and when its

limiting distribution exists, as t → ∞. According to definition of the OU type process and

proposition 1.4.4 the following holds,

Yt = e−λt Y0 +

∫ t

0
e−λ(t−s)dZs

D
= e−λt Y0 +

∫ t

0
e−λsdZs.
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As t→∞, if the limiting distribution exists, it is given by,

Y∞
D
=

∫ ∞
0

e−λsdZs.

The existence of the the above limiting distribution will be closely related to the existence

of a stationary (or invariant) distribution of an OU type process. Provided that a measure

ν is a Levy measure of BDLP Z1, it can be shown, see [1], that the necessary condition for

the existence of the distribution of Y∞ is,

∫
|x|>1

log (1 + |x|) ν(dx) < ∞.

Remark 1.4.8. Provided that the above limiting distribution Y∞ exists and the OU type pro-

cess Yt is stationary, the following are alternative representations of an Ornstein-Uhlenbeck

process,

Yt
D
=

∫ ∞
0

e−λsdZs
D
=

∫ 0

−∞
eλs
′
dZs′

D
=

∫ t

−∞
e−λ(t−s)dZs (1.28)

Note, provided that the OU type process is stationary, all three representations above

can be proved by using the above approaches and appropriate change of variable.

Remark 1.4.9. From the third equality from the representation (1.28), one can see that the

OU type process is a special case of a moving average process Zt =
∫ +∞
−∞ f(s− t)dZs where

f(s) = 1 (∞,0 ] (s) eλs, see [1].

1.4.3.2 The stationary OU type processes and self-decomposable distributions

There is a one-to one correspondence between the class of self-decomposable distributions

and the stationary OU type processes. As it was briefly mentioned in the remark 1.4.6, it is
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not difficult to see that if an OU type process is stationary then it is also self-decomposable,

see the proposition 1.4.9 below.

Proposition 1.4.9. Let Yt be a stationary OU type process on R, given by the formula,

Yt = e−λt Y0 +
∫ t

0 e
−λ(t−s) dZs, λ > 0. Then the distribution Y0 is self-decomposable, with

given parameters c = e−λt and Y (t)(c) =
∫ t

0 e
−λsdZs.

Remark 1.4.10. Note, it can be proved that any self-decomposable measure µ = µc ∗ µ(c)
t

is an invariant measure, see [1] and Applebaum’s lectures [2]. This means that any self-

decomposable distribution µ is a potential candidate for marginal distribution of some sta-

tionary Markov process Yt, such that Y0
D
= µ5.

In fact, it is possible to show the converse result is true, that any self-decomposable

distribution µ is a weak limit of a stationary Ornstein-Uhlenbeck type process Yt such that

Y0
D
= µ. We closely follow Applebaum’s book on the Levy processes and stochastic calculus [1]

and present the proposition below.

Proposition 1.4.10. Given any self-decomposable random variable X with distribution µ,

there exists a stationary Ornstein-Uhlenbeck type process Yt, such that,

X = Y0 =

∫ ∞
0

e−λsdZs, and L(Y0)
D
= µ.

Proof. Let us give a sketch of the proof. Intuitively, since any self-decomposable measure

can be decomposed for any c ∈ (0, 1), i.e. µ = µc ∗ µ(c)
t , take specific c = e−λt, to get, for

any t > 0, µ = µe
−λt ∗ L(Y (t)(c)), where Y (t)(c) =

∫ t
0 e
−λsdZs. From here, one can see

that it is possible to construct a stationary OU type process Yt and its BDLP levy process

5Remember that a Markov process Xt is stationary iff µ
∆
= L(X0) is an invariant measure.
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Zt that would satisfy the above equality, but it is not straightforward, see the reference for

details (Jurek and Vervaat (1983), [43]).

Note, the result in the above proposition can be interpreted as a complete characterization

of a self-decomposable distribution, see below.

Proposition 1.4.11. Let X be a self-decomposable random variable with Levy measure Q

of the form, Q(dx) = q(x)dx, where q(x) = k(x)/|x|, for some non-negative real function

k(.), increasing on (−∞, 0), decreasing on (0,∞), and satisfies,
∫∞
−∞(1∧x2)

k(x)
|x| dx <∞. It

follows that, if a random variable X is self-decomposable and if
∫
|x|>1 log (1+|x|)Q (dx) < ∞

then X can be represented as,

X =

∫ ∞
0

e−sdZs, (1.29)

where Zt is a Levy process whose law is uniquely determined by that of X. In fact it is a

BDLP corresponding to X, where Z1 is uniquely determined by its Levy measure W (dx).

Furthermore, the Levy measure W (dx) of Z1 is related to the Levy density q(x) of X by,

W+(x) = x q(x), for x > 0, and W−(x) = |x| q(x), for x < 0, (1.30)

In addition, if the Levy density q(x) of X is differentiable then the Levy measure W (dx) of

Z1 has the density w with respect to Lebesgue measure and the densities w(x) and q(x) are

related by,

w(x) = −q(x)− xq′(x) (1.31)
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1.4.3.3 Covariance of the stationary OU type process

The nature of the covariance structure of any processes is important from many different

aspects. For example in modeling it is essential to know if the data exhibit long or short range

dependence and how it evolves with time; statistical estimation and inference techniques are

highly reliant on the dependence structure of the underlying process and if the given process

satisfy mixing conditions.

The covariance of the OU type processes can be derived from the elementary calculations,

see below:

Cov(Yt, Yt+u) = Cov

(
Yt, e

−λuYt +

∫ u

0
e−λ(u−s)dZs

)
(1.32)

= e−λu V ar(Yt) + Cov

(
Yt,

∫ u

0
e−λ(u−s)dZs

)
(1.33)

= e−λu V ar(Yt) (1.34)

where Yt and the integral
∫ u

0 e−λ(u−s)dZs are independent, see the proposition (1.4.8). From

the above formula for the covariance, one can easily see that autocorrelation function of an

OU type process is given by:

ρ(u) = e−λ|u|. (1.35)

From the above formula we can see that parameter λ controls the memory of the OU type

process, where autocorrelation is decaying slower as λ decreases.

Remark 1.4.11. Note, because its auto-correlation function is decreasing exponentially as

number of lags is increasing, it follows that the Ornstein-Uhlenbeck process is short range
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dependent (SRD).

1.5 Superpositions of the OU type processes

1.5.1 Existence of supOU processes

Superpositions of the OU type processes, or supOU processes for short, where introduced

in the papers of Barndorff-Nielsen [4], Barndorff-Nielsen and Shephard [8] and Barndorff-

Nielsen and Leonenko [7], among others. In this section we will give a brief overview of

the superposition type models, i.e. their existence, uniqueness, and the main properties

including their covariance structure. The focus of this thesis will be mainly on their limiting

behavior, see chapter 2. We will start with the definition of finite and infinite superpositions

and the assumptions necessary so that they are well defined, see below.

Definition 1.5.1. Let’s assume the following,

(A) Let {Y (k)(t)}k≥1 be the sequence of independent stationary OU type processes, i.e. in-

dependent processes such that, each Y (k)(t) is a stationary solution of the equation:

dY (k)(t) = −λkY (k)(t)dt+ dZ(k)(λkt), t ≥ 0, (1.36)

in which the Lévy processes {Z(k)}k≥1 are independent, and λk > 0 for all k ≥ 1.

In addition, we assume that the self-decomposable distribution of Y (k) has finite moments

of up to q, q ≥ 2, it is closed under convolution with respect to at least one distributional

parameter δk, and that cumulants of order q ≥ 2 of Y (k) are proportional to parameter δk.
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(B) Another set of assumption is related to the growth of moments of Yt, see below,

∞∑
k=1

EY (k)(t) <∞ and

∞∑
k=1

V arY (k)(t) <∞. (1.37)

Let’s define either finite for an integer m, or infinite superpositions of the OU type processes

as the following,

(i) If the assumption (A) with q = 2 holds finite superposition for an integer m is defined as,

Ym(t) =
m∑
k=1

Y (k)(t), t ∈ R (1.38)

(ii) Provided that both assumptions, (A) with q = 2 and (B) hold, infinite superposition is,

Y∞(t) =
∞∑
k=1

Y (k)(t), t ∈ R, (1.39)

Note, the construction with infinite superposition is well-defined in the sense of mean-square

or almost-sure convergence provided that the assumption (B) holds.

Although assumption (A) may seem restrictive, it is satisfied for many examples with

tractable distributions of superpositions. The section 1.5.3 provides a number of examples

where both assumptions (A) and (B) are satisfied. These examples include Gamma, inverse

Gaussian and other well known distributions. Their superpositions have the marginal dis-

tributions that belong to the same class as the marginal distributions of the components of

superposition.
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1.5.2 The covariance structure of supOU processes

1.5.2.1 Finite supOU processes

In the case of finite superposition, the covariance function of the resulting process is given

by the following formula,

RYm(t) = cov(Ym(0), Ym(t)) =
m∑
k=1

V ar(Y (k)(t))e−λkt,

Recall the section 1.1, a stochastic process is short-range dependent if its covariance

function is integrable, i.e.
∫ +∞
t=−∞ |RYm(t)|dt < ∞.

Since we have,

∫ +∞

t=−∞
|RYm(t)| dt =

∫ +∞

t=−∞

m∑
k=1

V ar(Y (k)(t))e−λkt < ∞,

we may conclude that the finite superposition is a short-range dependent process.

1.5.2.2 Infinite supOU processes

In the case of infinite superposition, the covariance function is of the form,

RY∞(t) = cov(Y∞(0), Y∞(t)) =
∞∑
k=1

V ar(Y (k)(t))e−λkt,

and under the condition (A) the variance of Y (k)(t) is proportional to δk, that is

V ar(Y (k)(t)) = δkC2,
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where constant C2 does not depend on k and reflects parameters of the marginal distribution

of Y (k). If one chooses specific δk,

δk = k−(1+2(1−H)),
1

2
< H < 1, λk = λ/k

for some λ > 0, then we get that the covariance function of an infinite superposition is,

RY∞(t) = C2

∞∑
k=1

1

k1+2(1−H)
e−λt/k. (1.40)

The lemma below shows that the correlation function (1.40) is not integrable for the chosen

parameters δk and λk, thus the process obtained via infinite superposition exhibits long-range

dependence.

Lemma 1.5.1. For the infinite superposition of OU type processes that satisfy condition (A)

with q = 2 and condition (B), the covariance function of Y∞(t) given by with λ(k) = λ/k

and δk = k−(1+2(1−H)), 1
2 < H < 1, can be written as

RY∞(t) =
L(t)

t2(1−H)
, t > 0

where L is a slowly varying at infinity function.

Proof. The proof of this lemma is essentially the same as the proofs presented for particular

cases of superpositions of OU processes in [47], [49]. We provide it here for completeness

and for the remark that follows. The remark will be used for proofs later in the paper. Let

L(t) = C2t
2(1−H)

∞∑
k=1

1

k1+2(1−H)
e−λt/k.
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Estimate the sum appearing in the expression for L as follows:

∫ ∞
1

e−λt/u

u1+2(1−H)
du ≤

∞∑
k=1

1

k1+2(1−H)
e−λt/k ≤

∫ ∞
1

e−λt/u

u1+2(1−H)
du+ e−λt.

Transform the variables λt/u = s to get

C2

λ2(1−H)

∫ λt

0
e−ss2(1−H)−1ds ≤ L(t) ≤ C2

λ2(1−H)

∫ λt

0
e−ss2(1−H)−1ds+ C2e

−λtt2(1−H).

Since ∫ λt

0
e−ss2(1−H)−1ds→ Γ(2(1−H))

as t→∞, it follows that limt→∞ L(tv)/L(t) = 1 for any fixed v > 0.

Remark 1.5.1. From proof of Lemma 1.5.1

L([Nt]) ≤ C2

λ2(1−H)

∫ λ[Nt]

0
e−ss2(1−H)−1ds+ C2e

−λ[Nt][Nt]2(1−H)

≤ C2

λ2(1−H)
Γ(2(1−H)) + C2e

−2(1−H)
(

2(1−H)

λ

)2(1−H)

for all N ≥ 1 and t ∈ [0, 1] since the function x2(1−H)e−x is bounded (attains its maximum

at x = 2(1−H)). Also from the proof of Lemma 1.5.1

L(N) ≥ C2

λ2(1−H)

∫ λN

0
e−ss2(1−H)−1ds ≥ C2

λ2(1−H)

∫ λ

0
e−ss2(1−H)−1ds

for all N ≥ 1. Also note that L(0) = 0. Therefore the ratio L([Nt])/L(N) is bounded

uniformly in N ≥ 1 and t ≥ 0.
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1.5.3 Examples of OU type superpositions

The examples in this section have been discussed in [4, 47]. We briefly present them to

illustrate that conditions (A) and (B) are satisfied for a number of OU type processes.

1.5.3.1 Gamma supOU process

Gamma distribution Γ(α, β), α > 0, β > 0 is defined by the following probability density

function (pdf),

π (x) =
βα

Γ (α)
xα−1e−βx1[0,∞)(x).

It is self-decomposable and hence there is a stationary OU type process {Y (t), t ≥ 0} with

gamma marginal distribution, often referred to in literature as stationary Gamma OU type

process. Its covariance function is of the form,

RY (t) =
α

β2
exp {−λ |t|} .

The cumulant generating function is given by,

κY (z) = logEeizY (t) = −α log

(
1− iz

β

)
=
∞∑
m=1

α(iz)m

mβm
, z < β, (1.41)

so that

EY (t) =
α

β
, V arY (t) =

α

β2
.

Let’s look at the superposition of the stationary Gamma OU type processes. Suppose

{Y (k)(t), t ≥ 0}, k ≥ 1 are independent stationary OU type Gamma processes with marginals
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Γ(αk, β), k ≥ 1 where

αk = αk−(1+2(1−H)),
1

2
< H < 1.

It follows from our setup and (1.41) that the processes {Y (k)(t), t ≥ 0}, k ≥ 1 satisfy

condition (A) with the choice of δk = αk. In addition, if
∑∞
k=1 αk <∞, the the condition (B)

is satisfied as well, hence infinite superposition of the stationary Gamma OU type processes

is well defined. Thus, the supOU process given by,

Y∞(t) =
∞∑
k=1

Y (k)(t), t ≥ 0,

has a marginal Γ(
∑∞
k=1 αk, β) distribution and the covariance function is of the following

form,

RY∞(t) =
1

β2

∞∑
k=1

αke
−λ(k)t.

Remark 1.5.2. Note, with above choice of δk and a particular choice of λ(k) as λ/k we can

get a long range dependent stationary Gamma OU type process.

1.5.3.2 Inverse Gaussian supOU process

Inverse Gaussian distribution IG(δ, γ), δ > 0, γ > 0 given with pdf

π (x) =
1√
2π

δeδγ

x3/2
exp

{
−1

2

(
δ2

x
+ γ2x

)}
1[0,∞)(x), (1.42)

is self-decomposable, so there exists a stationary OU type process {Y (t), t ≥ 0} with IG(δ, γ)

marginal distribution and correlation function exp {−λ |t|}. The cumulant generating func-
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tion is

κY (z) = logEeizY (t) = δ

(
γ −

√
γ2 − 2z

)
=
∞∑
m=1

δ(2m)!(iz)m

(2m− 1)(m!)22mγ2m−1
,

and

EY (t) =
δ

γ
, V arY (t) =

δ

γ3
.

It follows that independent stationary OU type processes {Y (k)(t), t ≥ 0}, k ≥ 1 with

marginals IG(δk, γ), k ≥ 1 where

δk = δk−(1+2(1−H)),
1

2
< H < 1,

satisfy conditions (A) and (B), and we obtain the inverse Gaussian supOU process as,

Y∞(t) =
∞∑
k=1

Y (k)(t), t ≥ 0,

with marginal IG(
∑∞
k=1 δk, γ) distribution. The covariance function is

RY∞(t) =
1

γ3

m∑
k=1

δk exp {−λk |t|} .

1.5.3.3 Variance gamma supOU process

The Variance Gamma distribution V G (κ, α, β, µ) with the parameters

κ > 0, α > |β| > 0, µ ∈ R, γ2 = α2 − β2,
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is defined by the following pdf

π (x) =
γ2κ

√
πΓ (κ) (2α)κ−1/2

|x− µ|κ−1/2Kκ−1/2 (α |x− µ|) eβ(x−µ), x ∈ R,

where Kλ (z) denotes modified Bessel function of the second kind.

Since the Variance Gamma distribution is self-decomposable, the corresponding station-

ary OU type process, denoted as {Y (t), t ≥ 0}, exists and its cumulant generating function

is given by the following formula,

κY (z) = logEeizY (t) = iµz + 2κ log

(
γ

α2 − (β + iz)2

)
, |β + z| < α.

It follows that V G (κ, α, β, µ) distribution is closed under convolution with respect to pa-

rameters κ and µ. Independent stationary OU type processes {Y (k)(t), t ≥ 0}, k ≥ 1 with

marginals V G (κk, α, β, µk), k ≥ 1 where
∑∞
k=1 µk converges and a specific choice for the

parameter κk, i.e.

κk = κk−(1+2(1−H)),
1

2
< H < 1,

satisfy conditions (A) and (B), and we obtain the Variance Gamma supOU process as,

Y∞(t) =
∞∑
k=1

Y (k)(t), t ≥ 0,

with marginal V G
(∑∞

k=1 κk, α, β,
∑∞
k=1 µk

)
distribution. The covariance function is of the

form,

RY∞(t) =
2

γ2

(
1 + 2

(
β

γ

)2
) ∞∑
k=1

κk exp {−λk |t|} .
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1.5.3.4 Normal inverse Gaussian supOU process

The normal inverse Gaussian distribution NIG(α, β, δ, µ) with following parameters,

α ≥ |β| ≥ 0, δ > 0, µ ∈ R,

is defined by the pdf

π (x) =
αδ

π
eδγ

K1

(
α

√
δ2 + (x− µ)2

)
√
δ2 + (x− µ)2

eβ(x−µ), x ∈ R,

whereKλ (z) denotes modified Bessel function of the second kind. Since it is self-decomposable,

the corresponding stationary OU type process {Y (t), t ≥ 0} exists and its cumulant gener-

ating function is given by,

κY (z) = logEeizY (t) = iµz + δ

(√
α2 − β2 −

√
α2 − (β + iz)2

)
, |β + z| < α.

It follows that NIG(α, β, δ, µ) distribution is closed under convolution with respect to pa-

rameters δ and µ. Independent stationary OU type processes {Y (k)(t), t ≥ 0}, k ≥ 1 with

marginals NIG(α, β, δk, µk), k ≥ 1 with convergent
∑∞
k=1 µk, and δk given as,

δk = δk−(1+2(1−H)),
1

2
< H < 1,

satisfy conditions (A) and (B), and we obtain the normal inverse Gaussian supOU process

as,

Y∞(t) =
∞∑
k=1

Y (k)(t), t ≥ 0,
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with marginal NIG(α, β,
∑∞
k=1 δk,

∑∞
k=1 µk) distribution. The covariance function is given

by,

RY∞(t) =
α2

(α2 − β2)3/2

∞∑
k=1

δk exp {−λk |t|} .

1.5.3.5 Tempered stable supOU process

The positive tempered stable distribution TS(κ, δ, γ), κ ∈ (0, 1), δ > 0, γ > 0 is self-

decomposable, hence there exists a stationary OU type process {Y (t), t ≥ 0} with TS(κ, δ, γ)

as its marginal distribution. The distribution of Y (t) can be specified through its cumulant

generating function given by,

κY (z) = logEizY (t) = δγ − δ
(
γ

1
κ − 2iz

)κ
, 0 < z <

γ1/κ

2
.

Thus, the TS(κ, δ, γ) distribution is closed under convolution with respect to parameter δ. In-

dependent stationary OU type processes {Y (k)(t), t ≥ 0}, k ≥ 1 with marginals TS(κ, δk, γ),

k ≥ 1 and where δk is chosen as,

δk = δk−(1+2(1−H)),
1

2
< H < 1,

satisfy conditions (A) and (B), and we obtain the tempered stable supOU process as,

Y∞(t) =
∞∑
k=1

Y (k)(t), t ≥ 0,

with marginal TS(κ,
∑∞
k=1 δk, γ) distribution. The covariance function is given by,

RY∞(t) = 4κ (1− κ) γ
κ−2
κ

∞∑
k=1

δk exp {−λk |t|} .
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Remark 1.5.3. More examples of supOU type processes satisfying condition (A) can be

derived from other distributions, like for example: normal tempered stable, Euler’s gamma

distribution and z-distribution.
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Chapter 2

Intermittency of supOU processes

The phenomenon of intermittency has been widely discussed in physics literature (see

for example [11, 28, 57, 67, 69] and [27, Chapter 8]). The term is used to describe models

exhibiting high degree of variability and enormous fluctuations which escape from the scope

of the usual limit theory. Terms multifractality, separation of scales, dynamo effect are

often used interchangeably with intermittency. For a formal definition of intermittency

appearing in the theory of stochastic partial differential equations (SPDE) we follow [14]

and [44, Chapter 7]. There, a nonnegative random field {ψt(x), t ≥ 0, x ∈ R} stationary in

parameter x is said to be intermittent if the function k 7→ γ(k)/k is strictly increasing on

[2,∞) where γ(k) is the k-th moment Lyapunov exponent of ψ defined by

γ(k) = lim
t→∞

logE (ψt(x))k

t
, (2.1)

assuming the limit exists and is finite. This approach to intermittency is tailored for the

analysis of SPDEs and characterizes fields with progressive growth of moments.

To compare intermittency to a slower growth of moments, consider the sum φn =
∑n
i=1 ξi,

where ξi are positive independent identically distributed (iid) random variables with finite

moments. The k-th moment of φn grows as nk(Eξ1)k, therefore

γ(k) = lim
n→∞

k log n+ k logEξ1
n

= 0 (2.2)

57



for all k ≥ 1. With the appropriate centering and norming, the classical central limit theorem

holds.

In contrast, for a sequence of products of positive random variables ψn =
∏n
i=1 ξi

γ(k) = lim
n→∞

logEψkn
n

= logEξk1 .

If ξi are not constant a.s., then from Jensen’s inequality it follows that for l > k

Eξk1 <
(
Eξl
)k
l ,

showing that γ(k)/k is strictly increasing. The wild growth of moments of ψn provides the

main heuristic argument that intermittency implies unusual limiting behavior. A formal

argument showing that under some assumptions intermittency implies large peaks in the

space coordinate of the random field can be found in [44], some ideas of which will be used

later in this work.

By far the most investigated model exhibiting intermittent behavior is the parabolic

Anderson model (see [29–32]). In this work we consider models provided by the partial sums

of discrete superpositions of Lévy driven Ornstein-Uhlenbeck (OU) type processes. While

models based on Lévy flights describe the position of particle, models given by OU dynamics

describe the velocity of particle trapped in a field generated by quadratic potential ( [20]).

Applications of Lévy-driven OU type processes include financial econometrics [8,48,50], fluid

dynamics [66], plasma physics [15] and biology [59]. The stochastic model discussed in this

thesis provides another example of intermittency model based on the velocity (see [27, Section

8.5]). First, we modify the preceding definition of intermittency to tailor it to the analysis
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of sequences of partial sum processes. In the case of finite superpositions we show that the

central limit theorem holds. In the case of infinite long range dependent superpositions, we

show that the growth of cumulants is such that the partial sum process is intermittent. The

section 1.5.3 contains examples that fit our assumptions which cover, to our knowledge, all

the examples with tractable distributions of superpositions.

2.1 Intermittency

For a process {Y (t), t ≥ 0}, denote

q = sup{q > 0 : E|Y (t)|q <∞ ∀t}.

Our definition of intermittency is based on the version of Lyapunov exponent that replaces

t in the denominator of (2.1) with log t. For a stochastic process {Y (t), t ≥ 0}, define the

scaling function at point q ∈ [0, q) as

τ(q) = lim
t→∞

logE|Y (t)|q

log t
, (2.3)

assuming the limit exists and is finite for every q ∈ [0, q). Objects similar to the scaling

function (2.3) appear in the theory of multifractal processes (see e.g. [33]), however, there

are some important differences [45]. The following proposition gives some properties of τ .

Proposition 2.1.1. The scaling function τ defined by (2.3) has the following properties:

(i) τ is non-decreasing and so is q 7→ τ(q)/q;

(ii) τ is convex;
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(iii) if for some 0 < p < r < q, τ(p)/p < τ(r)/r, then there is a q ∈ (p, r) such that

τ(p)/p < τ(q)/q < τ(r)/r.

Proof. (i) For 0 ≤ q1 < q2 < q Jensen’s inequality implies

E|Y (t)|q1 = E (|Y (t)|q2)
q1
q2 ≤ (E|Y (t)|q2)

q1
q2

and thus

τ(q1) ≤ q1
q2
τ(q2)

proving part (i).

(ii) Take 0 ≤ q1 < q2 < q and w1, w2 ≥ 0 such that w1 +w2 = 1. It follows from Hölder’s

inequality that

E|Y (t)|w1q1+w2q2 ≤ (E|Y (t)|q1)w1 (E|Y (t)|q2)w2 .

Taking logarithms, dividing by log t for t > 1 and letting t→∞ we have

τ(w1q1 + w2q2) ≤ w1τ(q1) + w2τ(q2).

(iii) This is clear since q 7→ τ(q)/q is continuous by (ii).

We now define intermittency for a stochastic process and for a sequence of random vari-

ables by using the corresponding partial sum process.

Definition 2.1.1. A stochastic process {Y (t), t ≥ 0} is intermittent if there exist p, r ∈

(0, q) such that

τ(p)

p
<
τ(r)

r
.
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Later in the thesis, we will investigate intermittency of a stationary sequence of random

variables {Yi, i ∈ N} with finite mean. In this sense, intermittency will be considered as

intermittency of the centered partial sum process

S(t) =

btc∑
i=1

Yi −
btc∑
i=1

EYi, t ≥ 0.

Proposition 2.1.1(i) shows that the function q 7→ τ(q)/q is always non-decreasing. What

makes the process intermittent is the existence of points of strict increase. In the next two

sections, we connect this property to the limiting behavior of cumulants of partial sums of

superpositions of Ornstein-Uhlenbeck type processes. We show that while the partial sums

of finite superpositions obey the central limit theorem, partial sums of infinite long-range

dependent superpositions provide examples of intermittent processes.

Remark 2.1.1. To conclude this section, we note that intermittent sequences exhibit erratic

behavior which may preclude the usual central limit theorem type of results. For example,

take the case of positive, i.i.d random variables, see (2.2), for which we already showed are

not intermittent. It is well known that they do obey central limit theorem type of results if

properly normalized. Now, on the contrary, for an intermittent sequence such normalization

does not exist, which we will see in the next section for the case of partial sums of infinite

supOU processes, i.e. we will see that the partial sums of finite superpositions of Ornstein-

Uhlenbeck type processes obey the central limit theorem, while partial sums of infinite long-

range dependent superpositions provide examples of intermittent processes and most likely do

not obey CLT type of results.
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2.2 Limiting properties of partial sums of finite supOU

processes

We begin with the limit distribution of the partial sum process for the finite superposition.

Hence, for t > 0, we define a partial sum processes as following,

Sm(t) =

[t]∑
i=1

Ym(i), (2.4)

where the supOU process Ym(i), at time i, is a given by, Ym(i) =
∑m
k=1 Y

(k)(i), i ∈ Z.

In the following paragraph we provide a brief proof of the asymptotic normality of the

partial sum process, which is easy to prove using the strong mixing property (α-mixing) of

the OU type processes. Strong mixing property was established in the work of Jongbloed,

Van Der Meulen, and Van Der Vaart, see [42]. They showed that the integrability condition

on the Levy measure of BDLP,
∫
|x|>2 log |x| ν(dx) < ∞, given in the (1.27), is enough to

show the β-mixing which, in turn implies the strong mixing property of the stationary OU

type process. The β-mixing of general, multi-dimensional OU type process is treated in

Masuda, see [55]. He made a stronger assumption than (1.27), related to existence of the

absolute moments of order α of the marginal distribution. More specific, Masuda assumed

that the process is strictly stationary and that the following holds,
∫
|x|απ(dx)1 < ∞, for

some α > 0 which in turn yields a stronger result than only the β-mixing itself. It follows

that β-mixing coefficient converges to zero with an exponential rate, i.e. for some a > 0,

βY (t) = O(e−at), as t→∞. From this stronger assumption the asymptotic normality of the

partial sum process follows directly, see below. Note that previously, asymptotic normality

1Note that π is unique invariant probability measure.
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of partial sums was reported for inverse Gaussian and gamma finite superpositions [48]. The

result below is a straightforward generalization to a more general class of processes.

Theorem 2.2.1. For a fixed integer m > 0, let Ym be defined by (1.38), where OU type

processes {Y (k), k = 1, . . . ,m} defined by (1.36) are independent and E|Y (k)|2+d < ∞

for some d > 0 and all k = 1, . . . ,m. Then the partial sums process (2.4), centered and

appropriately normed, converges to the Brownian motion

1

cmN1/2

(
Sm([Nt])− ESm([Nt])

)
→ B(t), t ∈ [0, 1],

as N → ∞ in the sense of weak convergence in Skorokhod space D[0, 1]. The norming

constant cm is given by

cm =

( m∑
k=1

V ar
(
Y (k)(0)

) 1− e−λ(k)

1 + e−λ
(k)

)1/2

.

Proof. Since each OU type process in the superposition has a finite second moment, β- mixing

(absolute regularity, see the Appendix A) for each OU process holds with the exponential

rate. Namely, there exists ak > 0 such that the mixing coefficient β
Y (k)(t) = O(e−akt)

[55, Theorem 4.3]. Denote by α(k)(t) the strong mixing coefficient of the process Y (k),

then since β-mixing implies α-mixing, [13], we get 2α(k)(t) ≤ β(k)(t) ≤ Dke
−akt for a

constant Dk, for each k = 1, . . . ,m. A finite sum of α-mixing processes with exponentially

decaying mixing coefficients is also α-mixing, see again [13] with exponentially decaying

mixing coefficient, therefore weak convergence of partial sums of the process Ym in D[0, 1]

follows from Davydov, [18, Theorem 4.2], see the Appendix A).
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2.3 Limiting properties of partial sums of infinite supOU

processes

Before we provide the results from this section, we will briefly present an important

theorem related to the regular variation, previously defined in the Preliminaries section

(1.1). There, we defined the notion of regularly varying (RV) function or a function that

asymptotically behaves like a power function. The Karamata’s theorem, stated in detail

below, simply says that the ρ-regularly varying function integrates the way one would expect

a common power function to integrate. In other words, for the purpose of integration, a ρ-

varying function behaves roughly like xρ. A brief simple explanation is that any RV function

U(x) ∈ RVρ can be represented as, U(x) = xρL(x), where L(x) is a slowly varying function.

Since a slowly varying function asymptotically behaves like a constant, one would simply

guess that it can passed through the integral. Hence, one is left with integrating only a

power function. See the integral expression below,

∫ x

0
U(t) dt =

∫ x

0
tρ L(t) dt

∼
= L(x)

∫ x

0
tρ dt = L(x)xρ+1/(ρ+ 1)

The Karamata’s theorem is stated below.

Theorem 2.3.1 (Karamata’s theorem).

(i) Suppose ρ ≥ −1 and the U ∈ RVρ. Then
∫ x

0 U(t)dt ∈ RVρ+1 and

limx→∞
xU(x)∫ x

0 U(t)dt
= ρ+ 1

(ii) Suppose ρ < −1 and then U ∈ RVρ implies that
∫∞
x U(t)dt is finite and

∫∞
x U(t)dt ∈
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RVρ+1 and

limx→∞
xU(x)∫∞
x U(t)dt

= ρ− 1

Now, we can continue with the limiting properties of the infinite superposition process.

For t > 0, lets consider a partial sum processes of the infinite supOU process as follows,

S∞(t) =

[t]∑
i=1

Y∞(i). (2.5)

We now proceed with the limit distribution of the partial sum process for the infinite

superposition (1.39). The variance of this process has been computed in [47, Equation (5.3)],

however the result on the asymptotic normality of the partial sum process [47, Theorem 3]

was not correct. Also incorrect was statement (30) of [6, Theorem 5]. Here we provide the

derivation of the variance and correct the result on the limit distribution.

Lemma 2.3.2. For the infinite superposition (1.39) of OU type processes that satisfy condi-

tion (A) with q = 2 and condition (B), set λ(k) = λ/k and δk = k−(1+2(1−H)), 1
2 < H < 1.

Then

V ar (S∞([Nt])) =
L(N)[Nt]2H

H(2H − 1)
(1 + o(1)) , as N →∞, (2.6)

where L is a slowly varying at infinity function.

Proof. Using the expression for the covariance function of the infinite superposition from

Lemma 1.5.1, write
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V ar (S∞([Nt])) =

[Nt]∑
m,n=1

cov (Y∞(m), Y∞(n))

= [Nt]V ar (Y∞(n)) + 2

[Nt]∑
m,n=1,m>n

L(m− n)

(m− n)2(1−H)

= C2[Nt]ζ(1 + 2(1−H)) + 2

[Nt]−1∑
j=1

([Nt]− j) L(j)

j2(1−H)
,

where ζ(·) is Riemann’s zeta function. The sum appearing in the expression for the variance

[Nt]−1∑
j=1

([Nt]− j) L(j)

j2(1−H)

is a Riemann sum for the following integral:

∫ 1

0
([Nt]− [Nt]u)

L([Nt]u)

([Nt]u)2(1−H)
[Nt]du = [Nt]2H

∫ 1

0
(1− u)u2H−2L([Nt]u)du.

Consider the integral

∫ 1

0
u2H−2L([Nt]u)du =

1

[Nt]2H−1

∫ [Nt]

0
v2H−2L(v)dv,

and apply Karamata’s theorem [58, Theorem 2.1] to get

∫ [Nt]

0
v2H−2L(v)dv =

L(N)[Nt]2H−1

2H − 1
(1 + o(1))
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as N →∞. Similarly,

∫ 1

0
u2H−1L([Nt]u)du =

L(N)

2H
(1 + o(1))

as N →∞, and therefore

∫ 1

0
([Nt]− [Nt]u)

L([Nt]u)

([Nt]u)2(1−H)
[Nt]du =

L(N)[Nt]2H

2H(2H − 1)
(1 + o(1)).

Since L([Nt]u)/L(N) → 1 as N → ∞ uniformly on bounded intervals [64, Theorem 1.1],

the uniform convergence implies that

∫ 1

0
(1− u)u2H−2L([Nt]u)

L(N)
du =

∫ 1

0
(1− u)u2H−2du(1 + o(1)) =

1

2H(2H − 1)
(1 + o(1)).

For 1
2 < H < 1, the second term in the expression for the variance of S∞([Nt]) dominates

the first, and (2.6) follows.

In order to characterize the limit distribution of the partial sums of the infinite super-

positions, we use the representation of the discretized stationary OU process as a first order

autoregressive sequence

Y (k)(i) = e−λkY (k)(i− 1) +W (k)(i), (2.7)

where W (k)(i) is independent of Y (k)(j) for all j < i. Denote by ρk = e−λk . The fol-

lowing lemma provides a useful representation of the partial sums process for the infinite

superposition.

Lemma 2.3.3. The centered partial sums of the superposition of processes that satisfy condi-

67



tion (A) with q = 2 and condition (B) with λ(k) = λ/k and δk = k−(1+2(1−H)), 1
2 < H < 1,

can be written as

S∞([Nt])− ES∞([Nt] =
∞∑
k=1

b
(k)
[Nt]

τ (k)(0) +

[Nt]∑
j=1

∞∑
k=1

a
(k)
[Nt]−jV

(k)(j), (2.8)

where τ (k)(0), V (k)(j) are independent for different k, for each k: V (k)(j) are independent

for different j and also independent of τ (k)(0). The series in (2.8) converges almost surely,

and the coefficients are given by

b
(k)
[Nt]

=

[Nt]∑
i=1

ρik =
ρk(1− ρ[Nt]

k )

1− ρk
, (2.9)

and

a
(k)
[Nt]−j =

[Nt]−j∑
i=0

ρik =
1− ρ[Nt]−j+1

k

1− ρk
. (2.10)

Proof. Center the variables

τ (k)(i) = Y (k)(i)− EY (k)(i), V (k)(i) = W (k)(i)− EW (k)(i)

to arrive at centered version of (2.7)

τ (k)(i) = ρkτ
(k)(i− 1) + V (k)(i). (2.11)

Iterate (2.11) to obtain

τ (k)(i) = ρikτ
(k)(0) +

i∑
j=1

ρ
i−j
k V (k)(j).
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Now the partial sum of τ (k) can be written

[Nt]∑
i=1

τ (k)(i) = τ (k)(0)

[Nt]∑
i=1

ρik +

[Nt]∑
i=1

i∑
j=1

ρ
i−j
k V (k)(j)

= τ (k)(0)

[Nt]∑
i=1

ρik +

[Nt]∑
j=1

V (k)(j)

[Nt]∑
i=j

ρ
i−j
k

= τ (k)(0)

[Nt]∑
i=1

ρik +

[Nt]∑
j=1

V (k)(j)

[Nt]−j∑
m=0

ρmk

= b
(k)
[Nt]

τ (k)(0) +

[Nt]∑
j=1

a
(k)
[Nt]−jV

(k)(j),

where the coefficients are given by (2.9) and (2.10). Note that for different j, V (k)(j)

are independent due to (2.7), and they are also independent of τ (k)(0). For different k,

independence follows from the independence of OU type processes Y (k). Summing with

respect to k completes the derivation of (2.8), provided that the series in (2.8) converge

almost surely. Series convergence holds because the terms have zero mean, and the series of

second moments converge. Indeed, for the first series in (2.8)

∞∑
k=1

(b
(k)
[Nt]

)2E(τ (k)(0))2 = C2

∞∑
k=1

(b
(k)
[Nt]

)2δk

= C2

∞∑
k=1

[Nt]∑
j,i=1

ρ
i+j
k δk =

[Nt]∑
j,i=1

L(i+ j)

(i+ j)2(1−H)
.

The sum can be viewed as a Riemann sum for the double integral:

1

[Nt]2

[Nt]∑
j,i=1

L(i+ j)

(i+ j)2(1−H)
=

∫ 1

0

∫ 1

0

L([Nt](x+ y))

([Nt](x+ y))2(1−H)
dxdy(1 + o(1))

=
L(N)

[Nt]2(1−H)

∫ 1

0

∫ 1

0

dx dy

(x+ y)2(1−H)
(1 + (o(1))
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as N → ∞. The last equality is justified using Karamata’s theorem as in Lemma 2.3.2, or

by considering

L(N)

∫ 1

x=ε

∫ 1

y=0

L([Nt](x+ y))

L(N)

dx dy

(x+ y)2(1−H)

and using remark 1.5.1 and the dominated convergence theorem. More precisely, the fact

that L([Nt](x+y))/L(N) converges to 1 uniformly in x+y ∈ [ε, 1] by [64, Theorem 1.1], and

letting ε→ 0. Therefore the variance of the first series in (2.8) is of the order L(N)N2H .

For the second term in (2.8), the series of the variances is

[Nt]∑
j=1

∞∑
k=1

(
a

(k)
[Nt]−j

)2
E
(
V (k)(j)

)2
=

[Nt]∑
j=1

∞∑
k=1

[Nt]−j∑
i=0

ρik

2

(1− ρ2
k)C2δk,

since V ar(V (k)(j)) = (1− ρ2
k)V ar(τ (k)). The series of variances becomes

[Nt]∑
j=1

∞∑
k=1

[Nt]−j∑
i1,i2=0

ρ
i1+i2
k (1− ρ2

k)C2δk

=

[Nt]∑
j=1

[Nt]−j∑
i1,i2=0

(
L(i1 + i2)

(i1 + i2)2(1−H)
− L(i1 + i2 + 2)

(i1 + i2 + 2)2(1−H)

)
=

[Nt]3

λ2(1−H)
×

∫ 1

x=0

∫ 1−x

y=0

∫ 1−x

z=0

(
L([Nt](y + z))

([Nt](y + z))2(1−H)
− L([Nt](y + z) + 2)

([Nt](y + z) + 2)2(1−H)

)
dxdydz

× (1 + o(1)).
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Arguing in the same way as for the variance of first term in (2.8), we have

[Nt]∑
j=1

∞∑
k=1

[Nt]−j∑
i1,i2=0

ρ
i1+i2
k (1− ρ2

k)C2δk = [Nt]2H+1L(N)

×
∫ 1

x=0

∫ 1−x

y=0

∫ 1−x

z=0

(
1

(y + z)2(1−H)
− 1

((y + z) + 2/[Nt])2(1−H)

)
dxdydz

=
[Nt]2HL(N)

(2H − 1)
×
∫ 1

x=0

∫ 1−x

y=0
[Nt]

(
(y + 2/[Nt])2H−1 − y2H−1

−
(

(y + 1− x+ 2/[Nt])2H−1 − (y + 1− x)2H−1
))

dxdy(1 + o(1)).

It is not hard to see that as [Nt]→∞ the integrand converges to

2(2H − 1)
(
y2H−2 − (y + 1− x)2H−2

)
.

Also, by the mean value theorem

[Nt]
(

(y + 2/[Nt])2H−1 − y2H−1
)

=
2((2H − 1)

θ2(1−H)
≤ 2(2H − 1)

y2(1−H)
,

for some θ ∈ (y, y + 2/[Nt]). Similar integrable bound holds for the second difference in the

integrand above, and the dominated convergence theorem yields

[Nt]∑
j=1

∞∑
k=1

[Nt]−j∑
i1,i2=0

ρ
i1+i2
k (1− ρ2

k)C2δk

= 2[Nt]2HL(N)

∫ 1

x=0

∫ 1−x

y=0

(
y2H−2 − (y + 1− x)2H−2

)
dxdy(1 + o(1)),

which shows that the series in the second term converges almost surely, and that the variance

of the second term has the same order as the variance of the first term, namely L(N)[Nt]2H .

71



The next theorem gives the asymptotic behavior of the cumulants of the partial sums

process.

Theorem 2.3.4. Assume that the m-th cumulant of the centered partial sums of the super-

position of processes satisfies condition (A) for all q ≥ 2, condition (B), and has λ(k) = λ/k

and δk = k−(1+2(1−H)), 1
2 < H < 1. In addition, for each k, the cumulant function of τk,

given in the equation (2.11), is analytic around the origin. Then the m-th cumulant has the

following asymptotic behavior:

κm,N = DmL(N)[Nt]m−2(1−H)(1 + o(1))

as N →∞, where the Dm = CmK for some positive constant K.

Proof. Using (2.8), the logarithm of the characteristic function of the partial sums process

can be written as

logE exp {iu(S∞([Nt])− ES∞([Nt])}

=
∞∑
k=1

logE exp
{
ib

(k)
[Nt]

uτ (k)(0)
}

+

[Nt]∑
j=1

∞∑
k=1

logE exp
{
ia

(k)
[Nt]−juV

(k)(j)
}
.

Under this theorem’s assumption (basically, assumption (A) and that the cumulant function

of τk is analytic), the logarithm of the characteristic function of τ (k)(0) can be expanded

logE exp
{
iuτ (k)(0)

}
=
∞∑
m=2

(iu)m

m!
Cmδk,

where the summation is from m = 2 due to centering. From (2.11), the logarithm of the
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characteristic function of V (k)(j) can also be expanded as follows:

logE exp
{
iuV (k)(j)

}
= E exp

{
iuτ (k)(i)

}
− E exp

{
iuρkτ

(k)(i− 1)
}

=
∞∑
m=2

(iu)m

m!
Cmδk −

∞∑
m=2

(iuρk)m

m!
Cmδk

=
∞∑
m=2

(iu)m

m!
Cm(1− ρmk )δk.

Therefore the m-th cumulant of the centered partial sums process is

κm,N = Cm

∞∑
k=1

(
b
(k)
[Nt]

)m
δk + Cm

[Nt]∑
j=1

∞∑
k=1

(
a

(k)
[Nt]−j

)m
(1− ρmk )δk = I + II.

Consider the first term:

I = Cm

∞∑
k=1

(
b
(k)
[Nt]

)m
δk = Cm

∞∑
k=1

δk

[Nt]∑
i=1

ρik

m

= Cm

[Nt]∑
i1,...,im=1

∞∑
k=1

δkρ
i1+···+im
k =

Cm
C2

[Nt]∑
i1,...,im=1

L(i1 + · · ·+ im)

(i1 + · · ·+ im)2(1−H)

=
Cm[Nt]m

C2

∫ 1

0
· · ·
∫ 1

0

L([Nt](x1 + · · ·+ xm))

([Nt](x1 + · · ·+ xm))2(1−H)
dx1 . . . dxm (1 + o(1))

=
Cm[Nt]mL(N)

C2[Nt](2(1−H)

∫ 1

0
· · ·
∫ 1

0

dx1 . . . dxm

(x1 + · · ·+ xm)2(1−H)
(1 + o(1)) ,

where we used Remark 1.5.1 and the dominated convergence argument for the slowly varying

function. This shows that the first part of the expression for the m-th cumulant behaves like

L(N)[Nt]m−2(1−H) multiplied by a constant

Dm,I =
Cm
C2

∫ 1

0
· · ·
∫ 1

0

dx1 . . . dxm

(x1 + · · ·+ xm)2(1−H)
.
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Now consider the second term

II = Cm

[Nt]∑
j=1

∞∑
k=1

(
a

(k)
[Nt]−j

)m
(1− ρmk )δk

= Cm

[Nt]∑
j=1

∞∑
k=1

[Nt]−j∑
i=0

ρik

m (1− ρmk )δk

= Cm

[Nt]∑
j=1

∞∑
k=1

[Nt]−j∑
i1,...,im=0

ρ
i1+···+im
k (1− ρmk )δk =

Cm
C2

×
[Nt]∑
j=1

[Nt]−j∑
i1,...,im=0

(
L(i1 + · · ·+ im)

(i1 + · · · im)2(1−H)
− L(i1 + · · ·+ im +m)

(i1 + · · · im +m)2(1−H)

)
=
Cm[Nt]m+1

C2λ
2(1−H)

×
∫ 1

x=0

∫ 1−x

y1=0
· · ·
∫ 1−x

ym=0

(
L([Nt](y1 + · · ·+ ym))

([Nt](y1 + · · · ym))2(1−H)
− L([Nt](y1 + · · ·+ ym) +m)

([Nt](y1 + · · · ym) +m)2(1−H)

)
× dy1 . . . dymdx (1 + o(1))

Remark 1.5.1 and the dominated convergence argument followed by integration with respect

to ym yield

II =
CmL(N)[Nt]m−2(1−H)+1

C2

×
∫ 1

x=0

∫ 1−x

y1=0
· · ·
∫ 1−x

ym=0

( 1

(y1 + · · ·+ ym)2(1−H)
− 1

((y1 + · · ·+ ym) +m/[Nt])2(1−H)

)
× dy1 . . . dymdx (1 + o(1)) =

CmL(N)[Nt]m−2(1−H)

C2(2H − 1)

×
∫ 1

x=0

∫ 1−x

y1=0
· · ·
∫ 1−x

ym−1=0
[Nt]

(
(y1 + · · ·+ ym−1 +m/[Nt])2H−1 − (y1 + · · ·+ ym−1)2H−1

− ((y1 + · · ·+ ym−1 + 1− x+m/[Nt])2H−1 − (y1 + · · ·+ ym−1 + 1− x)2H−1)
)

× dy1 . . . dym−1(1 + o(1)).
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Note as [Nt]→∞ the limit of the integrand is

m(2H − 1)((y1 + · · ·+ ym−1)2H−2 − (y1 + · · ·+ ym−1 + 1− x)2H−2).

The same argument as in the proof of Lemma 2.3.3 and the dominated convergence theorem

yield

II =
mCmL(N)[Nt]m−2(1−H)

C2

∫ 1

x=0

∫ 1−x

y1=0
· · ·
∫ 1−x

ym−1=0

(
(y1 + · · ·+ ym−1)2H−2

− (y1 + · · ·+ ym−1 + 1− x)2H−2
)
dy1 . . . dym−1dx (1 + o(1))

= Dm,IIL(N)[Nt]m−2(1−H) (1 + o(1))

with

Dm,II =
mCm
C2

∫ 1

x=0

∫ 1−x

y1=0
· · ·
∫ 1−x

ym−1=0(
(y1 + · · ·+ ym−1)2H−2 − (y1 + · · ·+ ym−1 + 1− x)2H−2

)
dy1 . . . dym−1dx.

Thus the asymptotic behavior of the second term is the same as of the first term, namely

L(N)[Nt]m−2(1−H).

Remark 2.3.1. The analyticity of the cumulant function κX in the above theorem ensures

the existence of all the cumulants of the marginal distribution of the underlying supOU process

X. It follows from Lemma 3.1, paper [34]. that the cumulant function of X(t) is analytic in

the neighborhood of the origin if there exists a > 0 such that Eea|X(t)| < 1. This implies in

particular that all the moments and cumulants of X(t) exist. This condition is satisfied for

many self-decomposable distributions, for example the IG, NIG, and others. Other examples

of supOU processes satisfying the above conditions can be obtained by taking the marginal
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distribution to be gamma, variance gamma, tempered stable, Eulers gamma, or z-distribution.

For more details, see [34].

Corollary 2.3.5. Under the assumptions of Theorem 2.3.4, the centered partial sum process

{S∞(t)− ES∞(t), t ≥ 0} is intermittent.

Proof. Let Y (u) = S∞(u) − ES∞(u). We show intermittency at p = 2 and r = 4. From

Theorem 2.3.4, the m-th cumulant of Y ([Nt]) equals

DmL(N)[Nt]m−2(1−H)(1 + o(1))

as N →∞. Since L([Nt])/L(N)→ 1 as N →∞ for any t > 0, the m-th cumulant of Y (u),

denoted by κ̃m,u, equals

DmL(u)um−2(1−H)(1 + o(1))

as u→∞.

Using the relation between moments and cumulants it follows from Theorem 2.3.4 that

E|Y (u)|2 = κ̃2,u + κ̃2
1,u = D2L(u)u2H(1 + o(1)),

E|Y (u)|4 = κ̃4,u + 3κ̃2
2,u = D4L(u)u2H+2(1 + o(1)) + 3D2

2L(u)2u4H(1 + o(1))

as u→∞. Since H < 1 implies 2H + 2 > 4H, we have

τ(2) = 2H,

τ(4) = 2H + 2,

and thus τ(2)/2 < τ(4)/4.
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Note that the behavior of moments shown in the proof implies that

EY (u)4/(EY (u)2)2

grows to infinity as u→∞, the behavior noted by Frisch ( [27, Section 8.2] as a manifestation

of intermittency. Other examples of unusual growth of moments are given in [62] in the

context of fractional diffusion.

Similar behavior of cumulants was obtained in [4, Example 4.1] for a case of continuous

(integrated) superpositions of OU type processes and also in [22] in the context of proving

central limit theorem type results. The authors of [22] noted that the existence of the limit

was unlikely given the behavior of cumulants. We concur with this statement, but showing

that there is no weak limit under intermittency in the usual partial sum setting remains

an open problem. The consideration of why the existence of a weak limit is unlikely is as

follows.

If the limit of the partial sum process for the infinite superposition existed in the sense

of convergence of all finite dimensional distribution, then by the Lamperti’s theorem (see,

for example, [21, Theorem 2.1.1]), the norming had to be a regularly varying function of N .

That is, the weak convergence would hold for

NaL1(N) (S∞([Nt])− ES∞([Nt]))

for some a ∈ R and a slowly varying at infinity function L1. However, no matter what a ∈ R

is chosen, all cumulants of the centered and normed partial sum cannot converge. This is

because the m-th cumulant of Na (S∞([Nt])− ES∞([Nt])) behaves like Nm(a+1)−2(1−H).
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Also note that for even q, the scaling function defined in (2.3) in this case is τ(q) =

q − 2(1−H), and

τ(q)

q
= 1− 2(1−H)

q

is strictly increasing in q. The term −2(1−H) in the exponent of the asymptotic behavior

of the cumulants

κq,N = DqL(N)[Nt]q−2(1−H)(1 + o(1))

gives the reason for both the increasing behavior of τ(q)/q and for the lack of norming that

would make cumulants converge. Of course, convergence of cumulants provides a sufficient

means for proving the existence of the limit by showing the convergence of the characteristic

function. The formal link between intermittency and lack of the limit theorems needs to be

further developed for the partial sums and other sequences of stochastic processes.
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Chapter 3

Applications in finance

For the past thirty years, an extensive research has been devoted to finding classes of

stochastic models that can capture the essential statistical properties of stock price returns.

The Black-Scholes model, the most renowned and widely used model by far, also referred

to as geometric Brownian motion model or GBM for short, was first introduced by Black,

Scholes and Merton, see [12]. It models the stock price evolution as,

St = S0 exp { (µ− 1

2
σ2)t+ σB(t)}, t > 0. (3.1)

Even though the Black-Scholes model is the most widely used model so far, as we’ll see later

on, it is not able to capture some important features of the log-returns and therefore some

new alternatives were suggested in order to improve the overall model fit. The assumptions

it makes about the nature of the stock price process, in turn impose the log-returns to be

independent, stationary and normally distributed, the characteristics that differ from the

empirical features of the returns listed above.

First improvement on the GBM in (3.1), that uses Levy processes instead of Brownian

motion as a noise component was suggested by Merton in 1970’s [56]. Since most of the

properties of the Levy process, for example independent and stationary increments, having

a version that is a.s. cadlag will hold true for the Merton’s improved model as well, hence

the new model allows for jumps in the stock price evolution. The class of possible marginal
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distributions or infinitely divisible distributions is also larger than only Gaussian in geometric

Brownian motion model.

The next refinement of the Black-Scholes model, proposed by Mandelbrot (1967) [53],

had a completely different flavor. He used fractional Brownian motion BH(t) that is subor-

dinated by positive stochastic process θ(t) that is independent of FBM, i.e. he modeled a

stock price evolution with the process: BH(θ(t)). Mandelbrot’s model belongs to a group

of subordinator models, i.e. group of models where instead of the deterministic one is tak-

ing an increasing stochastic process. Note that financial interpretation of the time in the

subordinator type models is completely different than in the regular stochastic models, see

Howison and Lamper (2001) [41].

Another popular class of models that aimed to correct for the volatility parameter σ,

in the equation (3.1), is called a class of stochastic volatility models. Assumptions of the

GBM imply that volatility is constant, while in reality this parameter depends on both, time

and the strike price. This phenomenon, in financial literature is referred to as the volatility

smile. Widely recognized and used models from this class are Heston, Banrdorff-Nielsen and

Shepard (BNS) and superposition of Ornstein-Uhlenbeck type (SupOU) model [4, 8].

Finally, a model that we are going to use for calibration purposes is a slight modification

of the Heyde’s Fractional Activity time GBM model, or FATGBM for short, a version that

is in the literature frequently referred to as skewed FATGBM model. This model belongs to

a class of subordinator models, i.e. models where Brownian motion process is subordinated

to a specific activity time process, finite (or infinite) supOU process. In fact, it’s been shown

in [8] that the BNS stochastic volatility model is a special type of FATGBM model with a

specific choice of the activity time. The equivalence between the two is a consequence of

self-similarity of Brownian motion.
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3.1 The Black-Scholes Model:

Geometric Brownian Motion (GBM)

In this section, we will briefly present the rationale behind stock price modeling and why

Geometric Brownian motion seems to be a good representation of the reality.

In various option pricing models the time evolution of a stock price {St}t≥0 is modeled by

describing a price change in a small time interval: ∆St = St+∆t−St. Now, the question is if

it is better to use absolute, relative or log-returns. One can find in the finance literature that

the most commonly used metrics are relative and log-returns, both having their strengths

and weaknesses and one will be used over the other depending on the specific situation.

In order to be able to compare investments in different securities, instead of the absolute

price change: ∆St, we will focus on modeling the relative price change (relative return)1:

∆St/St. It is reasonable to expect that in a small time interval ∆t, return can be decomposed

into a systematic and a random component:

∆St/St = µ∆t︸︷︷︸
systematic

+σ∆B(t)︸ ︷︷ ︸
random

, S0 > 0 (3.2)

where the systematic part is expected value of the return and the random part is noise.

Remark 3.1.1. The equation 3.2 simply says that since the stock price fluctuates stochasti-

cally, it is reasonable to assume that it oscillates around some expected (deterministic) value

and that oscillation is due to random noise.

It is natural to assume that over a short period of time, both, the expected return (sys-

1In finance, the relative price change is usually called a simple return. When evaluating portfolios that
have more than one security simple returns are more convenient metric to use than absolute or log-returns.
However, most authors in the financial literature prefer working with log-returns due to their additivity over
time and the exponential nature of many financial models.
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tematic term) and the variance of random component are proportional to the time increment

∆t. Financial intuition here, is that in a short time span, the expected increase or decrease

in price is proportional to the time length and also the longer the ∆t the more volatile stock

price may be.

Therefore, in the Black-Scholes setup, the deterministic part is of the form: µ∆t, where

the proportionality parameter µ, called the drift, represents the mean rate of return of the

stock and it is assumed to be constant over time. At the same time, the random component

in the Black-Scholes model is modeled by: σ∆B(t) where ∆B(t) is the noise increment

driven by Brownian motion and σ > 0 is assumed to be constant over time. So, the random

term is driven by normally distributed error with variance σ2∆t. Parameter σ governs how

volatile2 the stock price is and is commonly referred to as volatility of the stock.

Remark 3.1.2. The above decomposition of the relative stock return into deterministic and

random component can be applied in general, regardless of the model. Hence, how the deter-

ministic term µ changes with time and if it should be constant function of time or random

and how the error term is distributed is all tied to a specific model.

Heuristically, as ∆t→ 0, the equation 3.2 becomes SDE of the form:

dSt/St = µdt+ σdB(t), S0 > 0 (3.3)

where {B(t)}t≥0 is a BM process. The stochastic differential equation 3.3 has an almost

surely unique, strong solution, called Geometric Brownian Motion (GBM) and it is given by

2σ controls how much effect the noise have on the stock return, i.e. how much the stock price fluctuates.
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the following expression:

St = S0 exp { (µ− 1

2
σ2)t+ σB(t) }, t > 0. (3.4)

Remark 3.1.3. Notice that GBM is an exponential of the Brownian motion process with

drift. From 3.1, we can conclude that log returns of the stock price process are normally

distributed: log
St
S0
∼ N ( (µ−1

2σ
2) t, σ2t) and that stock price itself is log-normally distributed.

3.2 Empirical evidence against the Black-Scholes model

As we mentioned earlier, the empirical evidence suggests that the classical Black-Scholes

model does not describe the properties of financial time series very well. We present here,

the essential ways in which statistical features of real log-returns differ from those implied

by the Black-Scholes, see the list below.

1. Empirical distribution of returns seems to be more sharply peaked with fatter tails.

2. Dependence structure of the returns:

(a) The empirical returns are uncorrelated (independent in the Gaussian case).

(b) The real absolute and squared returns exhibit strong and persistent dependence

(as opposed to Black-Scholes returns).

3. The conditional variance of the returns E[(Xt − µ)2 | Ft−1], for the empirical returns

behaves erratically3 as a function of time, i.e. seems to behave randomly and exhibits

3Note, recall the volatility parameter from GBM SDE (equations 3.2, 3.3), then this statement simply
says that the volatility parameter changes stochastically over time.
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possible signs of clustering and long-range dependence, while under the Black-Scholes

assumption, it is constant: E[(Xt − µ)2 | Ft−1] = σ2, for all t > 0.

In subsequent sections, we provide more details about each stylized fact along with ac-

companying figures and tables. The data consists of daily adjusted closing prices of the

Standard and Poor’s 500 Index (S&P 500), from the 9th of September 2005 till the 9th of

September 2016.

3.2.1 The non-Gaussian character of the returns

While the GBM assumption about the stock price evolution implies that log-returns are

normally distributed (see the remark 3.1.3), it has been shown in practice that the returns

have actually higher peaks and fatter tails (Leptokurtic distributions), see figure 3.1.
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Figure 3.1: Histogram of the S&P500 returns against the Normal curve fit.
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There are different ways one can showcase non-normality of the returns. The most pop-

ular among the practitioners is to test normality of the returns by using either Jarque-Bera,

Kolmogorov-Smirnov, Shapiro-Wilk or Anderson-Darling test, where each has its own ben-

efits and weaknesses. Our null hypothesis is that the log returns are i.i.d. normal under the

GBM, and we look for the evidence against this null hypothesis. In the table 3.1 below, we

present the results of the tests for the S&P 500 real and simulated returns alongside other

stock returns, from the period of 2005 to 2016. One can clearly see evidence against the

normality, similarly as in the figure above 3.1. As we continue we will see more and more

evidence against the normality assumption.

Asset returns N Sam. skewness Sam. kurtosis p-value Decision (H0)

S&P500 (real) 2770 -0.3325 13.5867 << 0.001 reject

S&P500 (sim) 2770 -0.0033 3.0491 > 0.5 retain

DJI 2770 -0.0961 13.4402 << 0.001 reject

NDX 2770 -0.1746 10.9485 << 0.001 reject

GSK 2770 -0.3673 8.7517 << 0.001 reject

PFE 2770 -0.194 10.2959 << 0.001 reject

COF 2770 -0.3491 17.6885 << 0.001 reject

BAC 2770 -0.3049 24.1146 << 0.001 reject

MSFT 2770 0.0729 13.2692 << 0.001 reject

IBM 2770 -0.1871 8.5777 << 0.001 reject

GOOG 2770 0.5622 13.2928 << 0.001 reject

Table 3.1: Values for sample skewness, kurtosis and the resulting decisions of the normality
test.
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Note that Jarque-Bera4 is a goodness of fit type test, which tests if sample skewness and

kurtosis match the ones of normal distribution, i.e. the null hypothesis is a joint hypothesis of

both, skewness and excess kurtosis being zero. Hence, it is similar to the tests we suggested.

In the next section, as we shall see in the table 3.2, even only the sample skewness and

kurtosis may indicate a degree up to a given distribution is asymmetric and has heavier tails

than normal.

3.2.1.1 Skewness (asymmetry) and excess kurtosis (fat tails)

Let us denote µ = µ1 = E[X] as mean, µ2 = E[(X − µ)2] as variance and µk = E[(X −

µ)k] as the k-th central moment of a random variable X. Let us also assume that {Xi}Ni=1, is a

sample of sizeN , from the distributionX, and that its sample (central) moments are given by,

µ̂k
(N) = 1

N

∑N
i=1

(
Xi − X̄(N)

)k
, for k = 1, 2, 3, 4, and where X̄(N) = µ̂1

(N) = 1
N

∑N
i=1Xi

is its sample average. In our case, we will assume that {Xi}Ni=1, is a sample of returns that

are uncorrelated (not necessarily independent) and identically distributed random variables.

Finally, skewness (γ1) is defined as a quantity that measures the degree to which a given

distribution X is asymmetric, while excess kurtosis (γ2) measures how heavy its tails are

comparing to normal. Below we give both formulas, for skewness and kurtosis respectively:

γ1 =
E[(X − µ)3]

(V ar[X])3/2
=

µ2

(µ3)3/2
, γ2 =

E[(X − µ)4]

(var[X])2
=

µ4

(µ2)2
.

Since we assumed that returns are uncorrelated, in order to estimate the skewness and

kurtosis parameters of the marginal distribution of the returns, we need to use estimation

techniques that are robust to the presence of correlation in our data. So, given the assump-

4This test is overly sensitive for smaller sample sizes and typical rule of thumb here is a sample size larger
than 2000.
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tions below are satisfied, we will employ the method of moments estimation, which allows

us to exploit the fact that, for N large enough, theoretical moments of the distribution are

relatively close to the sample moments. This is true provided that certain mixing properties

and therefore ergodicity of the returns are satisfied. This implies consistency and asymptotic

normality of the sample moments and hence of sample skewness and kurtosis. Note that

in our case mixing property is satisfied, see the theorem 2.4. Finally, the formulas for the

sample skewness and kurtosis are given below,

γ̂1
(N) =

µ̂3
(N)(

µ̂2
(N)
)3/2

, γ̂2
(N) =

µ̂4
(N)(

µ̂2
(N)
)2
.

Remark 3.2.1. Note that with respect to skewness, there are two types of distributions:

a negatively skewed (has longer tail to the left than to the right) and a positively skewed

distribution (reverse is true). Regarding the kurtosis, a mesokurtic distribution (behaves like

a Normal with kurtosis value of three), a platykurtic distribution (has flatter top and kurtosis

less than three), and finally a leptokurtic distribution (has higher peaks and kurtosis greater

than three). In general, kurtosis greater than 3 indicates a distribution whose tails decrease

slower than the Normal distribution and it is more sharply peaked.

Both skewness and kurtosis are usually measured as a reference to a Normal distribution,

that has skewness equal to zero and kurtosis equal to three (or excess kurtosis to zero).

In addition to the normality tests performed above (table 3.1), below we provide a table

with values of sample skewness and kurtosis, table 3.2, which seems to indicate that, for

the majority of our data sets, sample skewness is slightly negative compared to Normal,

while sample kurtosis is significantly higher. To be more specific, the sample skewness of

our S&P 500 index is only slightly negative, around −0.3325, while typically, the observed
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daily log-returns of different indices may exhibit at least some significant negative skewness.

Regarding the kurtosis, we clearly see that S&P 500 returns, as well as majority of other

securities have kurtosis significantly higher than three.

From the results we conclude that for majority of our data, the empirical distribution is

more Leptokurtic and has also slightly longer tail to the left. The fact that the distribution

of the real returns are more leptokurtic than Normal has already been noted by Fama

(1965), see [23]. The financial intuition behind a model with high kurtosis is that the

large movements in a stock price occur more frequently than in the model with Normally

distributed increments. This phenomena has been observed in the markets for quite some

time, and one recent example is the 2007/2008 financial crisis or the mortgage crisis. This

feature is one of the reasons for considering modeling a stock price processes via jumps.

Regarding skewness, one possible explanation behind the negative skewness5 is that investors

tend to react more strongly to negative information rather than the positive information,

see Rydberg (2000) [61].

5In addition, another interesting perspective to positively/negatively skewed returns, is that investors
are more willing to buy stocks that are positively skewed (meaning frequent small losses and a few extreme
gains), which intuitively means that investors would rather accept smaller expected returns even slightly
negative ones with an occasional extreme return (either gain or loss) than invest in the negatively skewed
stock returns. A real life example of this is buying lottery tickets or ”penny stocks”, small-cap growth stocks,
etc...
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Risky asset returns N Sam. Mean Sam. St.dev Sam. Skewness Kurtosis

S&P500 (real) 2770 0.00019458 0.0127 -0.3325 13.5867

S&P500 (sim GBM) 2770 -0.00010136 0.0125 -0.0033 3.0491

DJI 2770 0.00019027 0.0117 -0.0961 13.4402

NDX 2770 0.00038597 0.0137 -0.1746 10.9485

GSK 2770 0.00013589 0.0137 -0.3673 8.7517

PFE 2770 0.00025785 0.0144 -0.194 10.2959

COF 2770 0.000016862 0.0312 -0.3491 17.6885

BAC 2770 -0.00027863 0.0353 -0.3049 24.1146

MSFT 2770 0.00036112 0.0174 0.0729 13.2692

IBM 2770 0.00031453 0.0138 -0.1871 8.5777

GOOG 2770 0.00058731 0.0192 0.5622 13.2928

Table 3.2: Values for sample skewness, kurtosis mean and standard deviation

3.2.2 The dependence structure of the log-returns:

regular, absolute and squared returns

Another interesting phenomenon that is not being captured well by the Black-Scholes

model is the dependence structure of the log-returns and their absolute and squared values.

The dependence structure of the returns is very important because it tell us how predictable

stock returns are and how much we can infer about the future by only using historical data.

A standard graphical approach for exploring dependence in returns is the autocorrelation

function (ACF) which measures correlation between returns that are k-lags away. In order

to investigate further, assuming that we are given a sample of N-log-returns, we compute

89



and plot a sample autocovariance and autocorrelation function, given by the formulas below,

R̂(N)(k) =
1

N

N−k∑
t=1

(Xt − X̄)(Xt+k − X̄),

and

ρ̂(N)(k) =
R̂(N)(k)

R̂(N)(0)
,

where X̄ is the sample average and k represents number of lags.

If we assume that given sample of log-returns is coming from the population generated

by white noise then, for relatively large N , the sample autocorrelation estimator has Normal

distribution with variance 1/N , where number of lags should be much smaller than total

number of observations, 1 ≤ k ≤ m << N , see Anderson (1942). This means that we

can test if given returns are purely random (white noise) by checking if observed values

of autocorrelation lie within the 95% confidence bounds based on the asymptotic values

of the sample autocorrelation coefficient under the white noise assumption. These bounds

correspond to the levels of ±1.96/
√
N . The interpretation of the test is following: we would

reject the H0 : population being generated by white noise, only if, for the fixed number of

lags 1 ≤ k ≤ m << N , we observe that ρ̂(N)(k) is falling outside of the interval bounds

more than 5% of the time, in which case we would call these correlations significant.

In our case, from the figure below 3.2, we see that the sample autocorrelations of real log-

returns of various risky assets diminish rapidly and that there is little or no autocorrelation

present in returns past couple of lags, i.e. we can say that the correlations are statistically

insignificant (follow the white noise), see the green line. This is not enough to say that

returns are independent, one can only conclude that they are uncorrelated. If we want to

understand the correlation structure of the returns better, than it is necessary to study also
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a serial correlation of the quadratic and absolute returns. This, in turn, may revel some

relevant information about how the variance changes with time and if the accumulation of

large/small absolute returns persists as t → ∞. For example, the strong dependence of

the absolute returns, similarly as with squared returns, tells us if any accumulation of big

movements of risky asset prices exist in our data see below.
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Figure 3.2: Empirical autocorrelation function of regular, squared and absolute log-returns
for the S&P500 index.

In addition, in the figure 3.2, we also present sample autocorrelations for the absolute and

squared log-returns, |Xt| and X2
t respectively, t = 0, ..., N − k, and where the black dotted

lines on the plot represent the upper and lower bound of the 95% confidence interval for the

sample autocorrelations under the H0 (Gaussian white noise assumption). Interestingly, the

figure does show some strong persistence in autocorrelations for both, squared and absolute
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log-returns, and so there is a strong evidence against the GBM hypothesis. This empirical

evidence matches the previous observations of Heyde and Liu (2001) [39], Cont (2001) [16],

and also supports the ”stylized facts” outlined in Granger (2005) [35]. Nowadays, most of

the authors will consider the empirical features of risky asset returns as a foundation for

building a reliable model that is a good representation of reality.

Let us compare our finding about the empirical log-returns, given in the figure above

against the simulated GBM returns, calibrated on the same S&P500 data. We have decided

to take the most simple approach for calibration, i.e. we used (historical) sample mean and

variance in order to estimate the drift and volatility parameters. From this plot, see figure

3.3, one can clearly see that there is little autocorrelation present for all three sequences of

log-returns, regular, squared and absolute. This is considered to be an additional evidence

of the Black-Scholes deficiencies.

Recall, that a process is long-range dependent (LRD)6 if its autocorrecaltion function is

not integrable7, which in continuous case turns out to be,
∫ +∞
−∞ | ρ(t) | dt = ∞, for t ∈ R,

and
∑+∞
−∞ | ρ(k) | = ∞, for the discrete case. In contrast, a series whose autocorrelation is

integrable in R may display short-range dependence.

Many authors consider long-range/short-range dependence as very important empirical

feature of the returns. In general there are two schools of thought on this subject. One group

of authors claims that the long-range dependence exists for risky assets and that it has been

empirically proves, see Heyde and Yang (1997) [40] and references therein, however, this is

not an universally accepted view. One way to distinguish between whether we have strong

6Some other acronyms for the LRD/SRD processes is either a long/strong memory process or strong
dependence process, while for the short range depndence we have either short memory, weak memory or
weak dependence process.

7Note, that there is also one more representation of the LRD and that is via product of power function
and a slowly varying function.
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Figure 3.3: Autocorrelation function of regular, squared and absolute log-returns for the
simulated Geometric Brownian motion, calibrated on the S&P500 index.

or weak dependence in our data is to estimate, the so called Hurst parameter, which, in a

way, represent a direct link between the intensity of dependence of a given process and its

self-similar scaling nature.

One of the reasons that the infinite superposition model was introduced was as a long

range dependent solution that will keep the the most useful properties of the finite super-

position model8 and introduce the long range dependence in addition. For this thesis, due

to our findings we will refrain ourselves from using the long range dependence model and

instead work only with the finite superposition model, that we know they is short range

dependent.

8To mention the most important ones, tractability, non-normal class of marginal distributions and flexible
correlation structure.
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If these correlations are statistically significant we have an evidence of predictability.

One can use Ljung-Box (LB) test in order to check joint significance of the auto correlation

coefficients over more than one lag.

3.2.3 Stochastic Volatility and clustering

In a stochastic volatility model, price Xt is a solution of the following SDE, given by

dXt = µ(t,Xt)dt+ σ(t,Xt)dBt.

which exists under certain conditions on the coefficients. The functions µ and σ are known

as drift and the volatility of the underlying process Xt. The volatility function is also

referred to an instantaneous absolute volatility. In the above scenario, assuming that drift

is deterministic, the volatility function term σ(t,Xt) will directly influence the variance of

the Brownian motion. In particular, in the Black-Scholes model where GBM evolution is

assumed, both drift and volatility functions are constants, µ(t,Xt) = µ and σ(t,Xt) = σ,

hence the volatility parameter is equal to the variance of the returns. Hence it simply

describes how much effect does a noise term have on the price, see the figures 3.4 below.

In order to understand and model the volatility, one must start with the following ques-

tion: How to use the Black-Scholes model in order to price an option today (now) by using

the past information we have (historical price movements of the underlying stock)?

A first step in option pricing is to find/estimate the value of the volatility parameter σ,

which is assumed to be constant under the GBM. There is rich literature on how to measure

and estimate the volatility function σ(t,Xt) in general, but since this is not the topic of the

discussion, for the volatility calibration purposes we will focus only on estimating volatility
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Figure 3.4: S & P 500 real returns against the simulated GBM retuns.
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under the GBM model. A key difficulty in measuring the market volatility is that it is not

directly observable, it is a latent variable and therefore it must be inferred from the market

price values.

Two most common techniques for calibrating the volatility parameter are historical and

implied volatility. Here, we will focus only on the historical volatility, which is a retrospective

measure that reflects how volatile the asset has been in the past. Different historical volatility

type models can be used, from the most simple, like moving average (MA) and exponentially

weighting moving average (EWMA) models to GARCH and stochastic volatility type models.

A simple moving average model for one-day volatility at time t ≥ 0, is a sample standard

deviation of all daily observed log-returns over a fixed time-window W preceding t. The past

log-returns are denoted as Xi, i = t −W...t − 1, where time window W can be one year,

month, day. MA model of volatility is given by the following formula,

σ̂t =
1

W − 1

W∑
i=1

(Xt−i − X̄)2,

where Xi are observed log-returns and X̄ = 1
W

∑W
i=1Xt−i. Usually, the daily standard

deviations are annualized by multiplying σ̂t by square root of the number of trading days in

one calendar year, which is typically 250 days a year. This annualized standard deviation is

what is most commonly thought of the historical volatility.

Every day t, the above moving average formula for the spot volatility will be adjusted

correspondingly, annualized and used in the Black-Scholes model to price an option on that

particular day. Even though, under the GBM volatility should be constant, plots of the

one-year and one-month MA annualized historical volatilities of the S&P 500 index, show

that the estimated volatility parameter changes over time, see the figures 3.5a, 3.5b. This
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effect can be observed in the previous plots of the regular S&P 500 returns, see figure 3.4.

Moreover, one can even recognize a volatility clustering effect in both figures.
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Figure 3.5: The historical volatility for the S&P 500 index returns (daily readings).

From the figures 3.5a, 3.5b the volatility seems to behave erratically over time which

prompts one to consider non-deterministic models for this parameter. Moreover, one can

also see there is a slight mean reversion effect, along with a periodic behavior of volatility,

which can be better observed over the long term, see figure 3.5b. The phenomenon where

periods with high variance of returns are followed by periods with low variance is called

clustering effect and can be, intuitively, explained by the fact that large price variations are

more likely to be followed large price variations, and vice versa. The clustering effect can

be clearly observed in the figure 3.4. The fact that volatility exhibits clustering periodically

in time makes it partially predictable, which may be of great help in the fields of risk

management and option pricing.
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3.3 Fractal Activity time geometric Brownian motion

model with supOU as activity time

Since considerable investigation of the characteristics of the stock price returns show signs

of non-Gaussianity and a very delicate dependence structure, new models were proposed that

try to describe empirical log-returns more realistically. Most common problems that any of

the more advanced models face, are complexity and intractability. These models become

complicated either by introducing a large number of parameters to be estimated or because,

simply their marginal densities are intractable, i.e. don’t have a closed form solution.

Recall that in the previous chapters we mentioned that finite/infinite supOU processes

have tractable distributions if suitable marginal distributions are chosen. Hence, to keep

the tractability, for the calibration of the S&P 500 data, we suggested using Heyde’s skewed

FATGBM subordinator model where the activity time is constructed via finite superposi-

tions of OU type processes. This model generalizes classical GBM model by introducing a

time-changed version of the Brownian motion and most importantly subordinated process is

chosen so that final model supports all of the desired features of the empirical log returns.

Remark 3.3.1. It is important to notice that this approach proposed by Heyde [37] combines

all of the desired properties: non-Gaussian distributional features, dependence structure of

the log returns and tractable marginal distributions.

There are various types of models that try to incorporate non-Gaussian distributions that

have been proposed and investigated by many authors, see Prsetx, P.D, Sorensen, Rydberg.

For example, approach that uses Levy processes instead of a Brownian motion in GBM

model, proposed by Eberlein and Raible (1999) [19], allows larger class of possible marginal
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distributions (infinitely divisible distributions) and it also introduces jumps in the stock

price process. Then, already mentioned, Mandelbrot’s Fractional Brownian Motion (FBM)

subordinator model [53] and the Stochastic Volatility type models of Barndorff-Nielsen and

Shephard [8].

Here, we focus more on models that try to describe volatility as a stochastic process.

There are two approaches to building these type of models. One is modeling σ, the volatility

parameter, directly as a stochastic process. The models of this type are commonly called

Stochastic Volatility type models. The other way is through the subordination of a Brownian

Motion (or a Levy process) and by treating time as a random activity time process. These

are usually called subordinator or change of time models. Clearly, the model we suggested

for the calibration is of the second type.

Moreover, different activity time type models have been proposed depending on how the

activity time was constructed. In particular, use of Levy processes to model the activity

time was suggested by Madan and Seneta (1990), Madan, Carr and Chang (1998), see

[51, 52]. Authors, Bender and Marquardt (2009) [10] offered a construction of activity time

via convolution between a Levy subordinator and a deterministic kernel. While all these

constructions have many desirable features they do not specify the marginal distribution of

the returns in a closed form which makes these models extremely hard to implement.

3.3.1 Fractal Activity time geometric Brownian motion process

This section introduces a fractal activity time geometric Brownian motion process, or

FATGBM for short. FATGBM models, that belong in the group of subordinator models,

were first introduced by Heyde (1999) [37], and see also Heyde and Liu (2001) [39]. The

FATGBM model describes the stock price process {St, t ≥ 0}, driven by standard Brownian
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motion Bt and evaluated at a random activity time Tt, independent of Bt. The stock price

process is given by the following expression:

logSt = logS0 + µt+ θTt + σB(Tt), (3.5)

where µ, θ ∈ R, and σ > 0 are constants referred to as drift, asymmetry and volatility. The

activity time process {Tt}t≥0 is positive, nondecreasing with stationary (but not indepen-

dent) increments, denoted as τt = Tt − Tt−1, and it starts at zero a.s., T0 = 0. In addition,

processes Bt and Tt are Ft-adapted.

Remark 3.3.2. In the case when Tt = t of the FATGBM model, equation (3.5) becomes clas-

sical GBM model, with corresponding log-returns being independent and identicaly distributed

normal random variables, for any point in time t.

Remark 3.3.3. Note that the restricted case when θ = 0 is frequently called a symmetric

model. In which case the price process is of the form, St = S0 exp{µt+ σB(Tt)}.

If certain conditions, see Kobayashi (2010) [46] are satisfied 9, the FATGBM process in

equation (3.5) is a unique, strong solution to the time-change stochastic differential equation,

given below:

dSt
St

= µdt+ (θ +
1

2
σ2)dTt + σdBTt (3.6)

The activity time process Tt has an attractive interpretation of time over which the

market price evolves. In the finance literature, it is often associated with a trading volume

or with the flow of new information. In other words, the more information is released into

9Since the SDE 3.6 is homogeneous linear SDE, beside the standard assumptions for the existence and
uniqueness of the solution, one needs additional assumptions about the process Tt. In specific, the activity
time is assumed to be positive, non-decreasing, with continuous sample paths and To = 0
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the market, or the more ”frenzied” trading becomes, the faster the activity time flows, see

Howison and Lamper [41].

3.3.2 Properties of log-returns in the FATGBM model

As with the Black-Scholes model, one is more interested in modeling log returns directly

instead of the stock price process, hence the FATGBM log-returns are of the form,

Xt = logSt − logSt−1 = µ+ θ(Tt − Tt−1) + σ(B(Tt)−B(Tt−1)) (3.7)

D
= µ+ θ(τt) + σB(τt) (3.8)

D
= µ+ θ(τt) + σ

√
τtB(1), (3.9)

provided that τt = Tt − Tt−1.

The above log-returns can be simply expressed in terms of standard Normal errors,

Xt = µ+ θ(τt) + σ
√
τtξ(t), t = 1, 2, ...

where ξ(t) is an iid sequence of standard Normal random variables, independent of the

activity time τt, that is assumed by the model.

In the subsequent sections we will explain properties of the FATGBM log-returns and

how they relate to the stylized facts of the empirical stock returns. We will see how mo-

ments, skewness, kurtosis and dependence structure of the returns behaves as a result of our

assumptions about the parameters θ, µ, and Eτt. In addition, the fact that the variance of

the FATGBM log-returns is heteroscedastic will also be explored.
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3.3.2.1 Moments, skewness and kurtosis

Assuming the finiteness of at least fourth order moment of τt, the expressions for the

moments of the FATGBM log-returns of up to the fourth order are given below,

EXt = µ+ θEτt, (3.10)

E(Xt − EXt)2 = σ2Eτt + θ2M2, (3.11)

E(Xt − EXt)3 = 3θσ2M2 + θ3M3, (3.12)

E(Xt − EXt)4 = 3σ4(M2 + (Eτt)
2) + 6σ2θ2(EτtM2 +M3) + θ4M4, (3.13)

where Mi = E(τt − Eτt)i, i = 2, 3, 4. Note that Seneta (2004) [65] assumed that Eτt = 1

in his paper, and we will exploit this assumption when calibrating the Variance-Gamma pa-

rameters, see the section 3.4. In the above expressions one can see how different assumptions

about θ, µ, and Eτt can affect the properties of the returns.

The coefficients of skeweness (asymmetry) and of kurtosis (fatness of tails) are defined

respectively by,

γ1 =
E[(Xt − µ)3]

(V ar[X])3/2
=

3θσ2M2 + θ3M3

(σ2Eτt + θ2M2)3/2
. (3.14)

γ2 =
E[(X − µ)4]

(var[X])2
=

3σ4(M2 + (Eτt)
2) + 6σ2θ2(EτtM2 +M3) + θ4M4

(σ2Eτt + θ2M2)2
. (3.15)

Notice that, symmetric log-returns10 (γ1 = 0) correspond to the case when θ = 0, while

skewed returns correspond to the case when θ 6= 0. In addition, in the case of the symmetric

10Symmetric about the mean µ.
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log-returns: θ = 0, the kurtosis is:

γ2 =
3
(
M2 + (E[τt])

2
)

(E[τt])2
,

and it is still ≥ 3. This allows for the returns to have heavier tails than normal distribution

even in the case of symmetric returns.

From the above equations (3.10) one can see that even when θ = 0, the variance can be

heteroskedastic, i.e. one can pick E(τt) to be time-dependent.

3.3.2.2 The dependence structure in the FATGBM model

In this section we will show that the FATGBM subordinator model is capable of repro-

ducing the dependence properties of the simple, squared and absolute empirical log-returns,

as contrast to the Black-Scholes model.

First we’ll explain some of the properties of covariance of the log-returns in terms of the

activity time process {τt}. If finiteness of the moments is assumed accordingly, then for

k ≥ 1 one gets:

cov(Xt, Xt+k) = cov(θτt + σ
√
τtB1(1), θτt+k + σ

√
τt+kB2(1))

= θ2(Eτtτt+k − EτtEτt+k)

= θ2cov(τt, τt+k),

where B1 and B2 are independent copies of Brownian motion.

Now, let us see how the dependence structure changes as we pick different parameters.

For example when θ = 0 then cov(Xt, Xt+k) = 0, i.e. the log-returns are uncorrelated or
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independent in Gaussian case. In addition, from the above expression we can see that if the

increments of the activity time τt in the FATGBM model are independent or when activity

time is deterministic (τt = t), the log-returns turn out to be uncorrelated as well.

Remark 3.3.4. Note, when τt = t, FATGBM behaves like a classical Geometric Brownian

motion with i.i.d. Gaussian log-returns.

Now, let us explore the dependence structure of the squared and log returns in a general

case, when µ = θ 6= 0,

cov(X2
t , X

2
t+k) = cov

(
(µ+ θτt + σ

√
τtB1(1))2, (µ+ θτt+k + σ

√
τt+kB2(1))2)

= (σ4 + 4θ2µ2 + 4θµσ2)cov(τt, τt+k) + θ4cov(τ2
t , τ

2
t+k) +

+ (θ2σ2 + 2θ3µ)(cov(τ2
t , τt+k) + cov(τt, τ

2
t+k)),

θ=0
= σ4cov(τt, τt+k).

From the above expression for the covariance function, one can conclude that, even in

the symmetric case (θ = 0) which implies uncorrelated log-returns (cov(Xt, Xt+k) = 0), the

covariance of the squared returns is still persistent and depends only on the covariance of

the subordinator, cov(X2
t , X

2
t+k) = σ4cov(τt, τt+k) for θ = 0.

Remark 3.3.5. One can conclude that dependence properties of the activity time process

{τt} directly imply the properties of the squared log-returns {X2
t }.

In the next paragraph we will explore the covariance structure for the absolute log-returns
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when µ = θ = 0, see the details below:

cov(|Xt|, |Xt+k|) = cov(σ
√
τt |B1(1) |, σ√τt+k |B2(1)| )

= σ2E(|B1(1)| )E( |B2(1)| ) cov(
√
τ t,
√
τt+k)

=
2

π
σ2cov(

√
τ t,
√
τt+k)

Similarly as for quadratic returns, we see that assuming θ = 0 implies uncorrelated log-

returns, while absolute log-returns are still directly dependent on the covariance structure

of the activity time process.

3.3.2.3 Stochastic volatility - conditional heteroscedasticity

In this section we will see that, with the appropriate choice of the activity time τt, the

FATGBM log-returns display the property of conditional heteroscedasticity, that is a time

dependent conditional variance. To be more precise, if one chooses the activity time τt that

has specific dependence structure, the heteroscedasticity simply follows.

Let Ft = σ({B(u), u ≤ Tt}, {Tu, u ≤ t}) be the sigma-algebra of information available

up to time t, then the conditional variance is of the form:

V ar(Xt|Ft−1) = E(X2
t |Ft−1)− E(Xt|Ft−1)2 (3.16)

= θ2E(τ2
t |Ft−1) + (σ2 + 2µθ)E(τt|Ft−1)− (3.17)

−
(
2µθE(τt|Ft−1) + θ2E(τt|Ft−1)2) (3.18)

= θ2V ar(τt|Ft−1) + σ2E(τt|Ft−1). (3.19)

In the case of restricted model, when θ = 0, the above expression reduces to: V ar(Xt|Ft−1) =
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σ2E(τt|Ft−1), see Heyde and Liu (2001) [39].

Remark 3.3.6. What is interesting here, is when one does comparison of the time-dependent

conditional variance of the FATGBM model to the constant conditional variance of the Black-

Scholes model, one can conclude that the first model offers considerably more flexibility. That

is, one can model conditional variance or the ”volatility”) as they are pleased: either as a

random function of time or only a function of time. Note that, even in the reduced/symmetric

FATGBM model, where θ = 0, even though the returns are uncorrelated, one can still model

the conditional variance.

Remark 3.3.7. Note, it is common in industry and finance to refer to the parameter σ,

which in the Black-Scholes model simply represents a standard deviation of the returns, as

the volatility parameter. Even though it may be confusing at times, the volatility would be

referred to as random or stochastic, throughout the applied literature. Even though the context

is understood, it is not correct mathematically, since expectation cannot be random. Hence

here, we use the term volatility for conditional variance only - for which we know it can be

random.

3.3.3 Distribution theory

Since the FATGBM log returns are of the form:

Xt
D
= µ+ θτt + σ

√
τtB(1),

then the conditional distribution of the returns: Xt, given the variance τt = V is normal

with mean µ and variance σ2V when θ = 0, while when θ 6= 0, the mean is µ+ θV and the
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variance is the same. See below,

Xt|τt
D
= N (µ+ θτt, σ

2τt).

Since the distribution of the log-returns Xt is conditionally normal, they belong to the class

of normal mixed distributions or so-called generalized hyperbolic distributions.

3.3.3.1 Gamma distribution of the unit increments of the activity time process

Suppose that the activity process τt follows a Gamma distribution, then the distribution

of the log-returns Xt is going to be a Variance Gamma (VG) distribution. This is actually

the reason why this distribution is called Variance-Gamma, because its variance is Gamma

distribution: V G(µ, θ, σ2, α, β) |V ∼ N (µ, σ2V ), where V has Gamma distribution.

Although VG distribution was explained in the section 1.5.3.3 in detail, here we will

introduce a different parametrization of the VG distribution, the one that is later on going

to be used for calibration of the returns.

As a reminder, if τt is distributed as Γ(α, β), where α, β > 0, then its density and the

characteristic function are given by the expressions:

fΓ(x) =
βα

Γ(α)
xα−1e−βx, x > 0, φΓ(u) =

(
1− iu

β

)−α
, u ∈ R. (3.20)

The moments of the τt-marginal Gamma distribution are

Eτt =
α

β
, M2 =

α

β2
, M3 =

2α

β3
, M4 =

3α(α + 2)

β4
. (3.21)

where Mi = E(Xt − EXt)i.
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The specific choice of a Gamma distribution as a marginal distribution of the activity

time τt coupled with the FATGBM model setup results in log-returns Xt having the marginal

skew Variance Gamma distribution, see [51], with the density given by,

fV G(x) =

√
2

π

βαe
− (x−µ)θ

σ2

σΓ(α)

(
|x− µ|√
θ2 + 2βσ2

)α−1
2
K
α−1

2

(
|x− µ|

√
θ2 + 2βσ2

σ2

)
, (3.22)

where Kη(ω) is a modified Bessel function of the third kind with index η11. For η ∈ R and

ω > 0 is given by,

Kη(ω) =
1

2

∫ ∞
0

zη−1e−ω/2(z+1/z)dz.

Note that the behavior of the tail of the VG distribution is different from that of a Normal

distribution. VG is considered to belong to a class of semi-heavy tails distributions that decay

slower than the Normal and faster than the heavier tail distributions. The probability of

its tail is a product of both a power and an exponential function. Namely, if Xt has VG

distribution, then as x→∞, the tail probability is given by12:

P (|Xt| > x) ∼ const(α, β, σ)xα−1e
−x
√

2β/σ2
.

The characteristic function of the VG log-returns Xt is given by:

φV G(u) = eiµu
(
1− iθu

β
+

1

2β
σ2u2)−α, u ∈ R. (3.23)

11Note that Kη is referred to as a modified Bessel function of the second kind in some texts.
12The notation: f(x) ∼ g(x) means that limx→∞f(x)/g(x) = 1

108



In the symmetric case (θ = 0) the expression for the characteristic function is of the form:

φV G(u) = eiµu
(
1 +

1

2β
σ2u2)−α. (3.24)

Remark 3.3.8. The distribution defined in (3.22) and in (3.23) we will denote as V G(µ, θ, σ2, α, β).

Specializing the equations for the central moments of the FATGBM model, in 3.10, by

taking that τt has Gamma marginal distribution, the central moments of the log-returns Xt

are given by:

EXt = µ+ θα/β,

E(Xt − EXt)2 = σ2α

β
+
θ2α

β2
,

E(Xt − EXt)3 =
3θσ2α

β2
+

2θ3α

β3
,

E(Xt − EXt)4 =
3σ4α(α + 1)

β2
+

6σ2θ2α(α + 2)

β3
+

3θ4α(α + 2)

β4
.

Remark 3.3.9. Note that, till now we defined only the univariate characteristics of the

activity time process {τt}, i.e. we fully defined the marginal distributions. We haven’t yet

introduced any time-dependence. This will be done through the particular choice of the co-

variance structure for the activity time process. This step is necessary in order to get the

time-dependent conditional variance and the suitable dependence structure of the returns.

Remark 3.3.10. Notice here, that if the appropriate activity time process τt along with

the convenient dependence structure is chosen, then all the empirical properties of the stock

log-returns can be modeled accordingly.
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3.4 Data calibration

In this section, we would like to validate the approach of using a version of the FATGBM

process to model the stock price evolution. The marginal distribution for the activity time is

chosen to be a Gamma distribution. This, in turn implies that the marginal distribution of

the log-returns is Variance-Gamma. We will showcase the strengths of this approach through

series of plots and tables presenting the stylized facts of the log-returns discussed previously,

while comparing it to the classical Geometric Brownian Motion (GBM) model.

The objective of this calibration exercise is to estimate the parameters of the Variance-

Gamma (V-G) distribution whilst trying to keep the assumption of the dependent log-

returns. While in the option pricing literature there are many different ways to approach

model calibration problems, a frequently used method is to minimize squared residual errors

between the underlying model and data at hand. Although, this approach is effective and

it does not require many assumptions about the underlying distribution of the returns, it is

fairly more complex to implement than the classical maximum likelihood (ML) or method

of moments (MOM). Due to the fact that the returns in our model are dependent, so the

regular MLE is not appropriate, we have decided to take a simpler route and to derive

parameter estimates for the VG distribution using the method of moments technique. Im-

portantly, this technique, if relying on the stationarity of increments and ergodicity property

gives consistent estimators. As an exploration, we used the version of the MLE technique

called pseudo-likelihood for the comparison purposes. It is explained below and in the results

section in more details.

We will digress here for a moment to explain briefly and compare strengths and weakness

of both, the MOM estimation technique and the Maximum Likelihood (ML) approach. It
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is well known that, even though the MOM is relatively simple and reliable technique which,

under very mild assumptions gives consistent estimators, these estimators are often biased.

In addition, when working with small samples, the estimates derived by the MOM can

fall outside of the parameter space. On the contrary, when estimating parameters from a

known family of distributions, the maximum likelihood estimate is very efficient. Now, there

are some situations when using the method-of-moments technique is more appropriate, for

example, when likelihood equations are intractable or when one does not want to make

any distributional assumptions. In our case, we want to keep the dependent observations

assumption and use the estimation techniques that take this into account, hence the regular

MLE would not be appropriate.

In addition, we will briefly dabble with pseudo-likelihood (PL) method, where the PL

is said to be an approximation of the joint likelihood of a set of observed data. Pseudo-

likelihood and Quasi-likelihood are very useful techniques to use in the situation where

the full likelihood is difficult to work with or unknown. In our case, there is dependency

in the data hence the likelihood is unknown. The pseudo-likelihood approach maximizes

the product of marginal densities, as opposed to the full joint density. If observations are

independent then these two coincide. In certain cases one can show that the pseudo-likelihood

estimators are even consistent, see Cox and Reid (2004) [17]. We will attempt to use the

MLE technique along with the unrealistic assumption of the independent increments, which

is equivalent, in a way, to using the pseudo-likelihood method. That is, we are maximizing the

product of the marginal distributions since we assumed ”the observations are independent”,

which is nothing but the product approximation of the joint likelihood and the weaker the

dependence in the data the two will be closer. This means that the MLE parameter estimates

may not be that far from the true values of the parameters, especially if dependence is not as
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pronounced. As we shall see in the results section 3.4.2, our calibration exercise showed that

MLE estimators seemed to fit better than MOM which means that PL is relatively close to

the joint likelihood of the data. In addition parameter θ seemed to be close to zero which

intuitively implies that dependencies are not that strong.

3.4.1 VG parameter estimation using method of moments

As mentioned, we are considering FATGBM returns, see (3.5), (3.7), given by the ex-

pression,

Xt = logSt − logSt−1 = µ+ θ(τt) + σ
√
τtB(1), (3.25)

where µ, θ, and σ > 0 are real constants and τt = Tt − Tt−1 is an activity time process:

positive, increasing, with stationary increments, and independent of Brownian motion.

We assume that increments of the activity time follow a marginal gamma distribution

Γ(α, β). In addition, since E τt <∞, without loss of generality we can assume that

Eτt = 1, (3.26)

which simply scales down the expected activity time change to be in units of one, over the

unit calendar time. The scaling constant gets absorbed into θ and σ.

Since the Eτt = 1 the moments of the Gamma distribution, given in (3.27) are the

following,

Eτt = 1, M2 =
1

α
, M3 =

2

α2
, M4 =

3(α + 2)

α3
. (3.27)

Given the above assumptions, when increments of activity time follow a marginal gamma

distribution Γ(α, α), the returns follow a marginal (skew) VG distribution, denoted as
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V G(µ, θ, σ2, α) and given by,

fV G(x) =

√
2

π

ααe
− (x−µ)θ

σ2

σΓ(α)

(
|x− µ|√
θ2 + ασ2

)α−1
2
K
α−1

2

(
|x− µ|

√
θ2 + ασ2

σ2

)
(3.28)

Considering the above V G(µ, θ, σ2, α) distribution and given the equations (3.10), we

obtain the following for its centralized moments,

EXt = µ+ θ, (3.29)

E(Xt − EXt)2 = σ2 + θ2M2, (3.30)

E(Xt − EXt)3 = 3θσ2M2 + θ3M3, (3.31)

E(Xt − EXt)4 = 3σ4(M2 + 1) + 6σ2θ2(M2 +M3) + θ4M4, (3.32)

Consequently, after substituting the momentM1, ...,M4 in the above equations, we obtain

the following equations for the central moments,

EXt = µ+ θ, (3.33)

E(Xt − EXt)2 = σ2 +
θ2

α
, (3.34)

E(Xt − EXt)3 =
3θσ2

α
+

2θ3

α2
, (3.35)

E(Xt − EXt)4 = 3σ4
(

1 +
1

α

)
+

6σ2θ2

α

(
1 +

2

α

)
+

3θ4

α2

(
1 +

1

α

)
(3.36)

From the above equations, we can obtain expressions for the coefficients of skewness and

of kurtosis. If we assume that θ ≈ 0, we can ignore all terms higher than θ2, θ3, θ4... in the
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above equations (3.33), and so we get

µ1 = EXt = µ+ θ, (3.37)

µ2 = E(Xt − EXt)2 ≈ σ2, (3.38)

µ3 = E(Xt − EXt)3 ≈ 3θσ2

α
(3.39)

µ4 = E(Xt − EXt)4 ≈ 3σ4
(

1 +
1

α

)
(3.40)

If we denote the sample (central) moments as, µ̂k
(N) = 1

N

∑N
i=1

(
Xi − X̄(N)

)k
, for

k = 1, 2, 3, 4, and where X̄(N) = µ̂1
(N) = 1

N

∑N
i=1Xi is its sample average. Now by

equating the theoretical moments to the sample moments, we get

µ̂1 = µ+ θ̂,

µ̂2 = σ̂2,

µ̂3 =
3θ̂σ̂2

α̂

µ̂4 = 3σ̂4
(

1 +
1

α̂

)
,

From now on, in order to simplify the presentation of the results, instead of the α-

parameter we’ll be using ν = 1/α, in which case the MOM estimators are given by the

following set of formulas,

µ̂ = µ̂1 − θ̂, σ̂2 = µ̂2, θ̂ =
α̂µ̂3

3σ̂2

(
=

µ̂3

3σ̂2ν̂

)
, α̂ =

1

(
µ̂4
3σ̂4 − 1)

(
ν̂ =

µ̂4

3σ̂4
− 1

)
(3.41)

Remark 3.4.1. Note, if the θ̂ in the true sample is small then the full set of equations (3.33)

will be very closely satisfied by the MOM estimators µ̂, θ̂, σ̂, and α̂ ( = 1/ν̂).
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Remark 3.4.2. Ideally we would have liked to estimate full set of parameters for VG dis-

tribution V G(µ, θ, σ2, α, β), but due to the fact that solving a system of large number of

nonlinear equations can be challenging at best, we are making some small simplifications

in order to obtain meaningful results. Note that, there is no need for the independence of

increments assumption in order to estimate the above parameters.

Remark 3.4.3. Notice here, that even though we have assumed that θ is small, we have

avoided to take θ = 0 from start, in which case we would be working with the symmetric

VG distribution, and the model that would have the skewness parameter equal to zero and

uncorrelated returns. To be more specific, setting the parameter θ = 0 in (3.7) tells us

that the returns Xt are distributed symmetrically about their mean µ with the variance σ2.

Actually, in the financial context, the symmetric model assumption is not that far away from

the truth, since symmetry is usually the case when working with the empirical data.

3.4.2 VG parameter fitting - results

Data used for this calibration exercise is the same as the one used in previous chapters.

It consists of daily adjusted closing prices of the Standard and Poor’s 500 Index (S&P 500),

in the eleven year period, from the 9th of September 2005 till the 9th of September 2016.

The total number of log daily prices was N=2770. The figure 3.6a shows the S&P500 price

evolution in the time period from 2005-2016, and in the figure 3.6b the log-returns from the

same period are presented.

We tried couple of different ways to calibrate the parameters, where two of the method

of moments approaches are explained in first and second, while the MLE approach is given

in the third example.
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Simulated GBM Returns (calibrated on the S&P 500 index data)

(b) Empirical log-return sequence for S&P500 index

Example 3.4.1. In this example we exactly followed the estimation approach suggested in

the Seneta’s (2004) paper [65] and what we explained previously, i.e. we assumed that θ ≈ 0,

so the terms θ2, θ3, θ4... are ignored. We used the MOM estimates provided in (3.37), and

results are the following:

µ̂ = 1.9458× 10−4,

σ̂ = 0.0127,

θ̂ = −1.0477× 10−11,

ν̂ = 3.5266, (β̂ = 0.2836)

First, notice that θ̂ is very small, hence θ2, θ3, θ4... are nearly negligible, which in turn implies

the above estimates can be considered to be relatively close to the moment estimates. The
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resulting VG density is shown in the figure 3.9a. To compare this method to the other two

approaches in the examples below, please see the figure 3.6.

Example 3.4.2. In this example we kept the terms θ, θ2, while ignoring θ3, θ4... in the

equations (3.33) and solved the system of non-linear equations in the MATLAB software.

The estimates we got as a solution are given below:

µ̂ = 0.0005978,

σ̂ = 0.0127071,

θ̂ = −0.0004032197,

ν̂ = 3.50211.

Here too θ̂ is relatively small, larger than in the previous example. Note that while σ and ν

are unchanged, the estimates for µ and theta are considerably affected in this compared to

the previous example, which casts doubt into the assumption that θ = 0. The VG density

with the estimated parameters is shown in the figure 3.9b. To compare this method to the

other two approaches see the figure 3.6.

Example 3.4.3. In the final example we fitted the parameters of the VG distribution by

maximizing the corresponding likelihood along with an additional assumption of independence

of increments. For the initial values of the algorithm we used the MOM estimates which is a

standard procedure. We interpreted the resulting estimates as quasi-likelihood type, or in our

case better to say pseudo-likelihood type. Since pseudo-likelihood is simply an approximation

of the joint likelihood, any differences between these and the MOM estimates we can explain

with possibly persistent dependencies in our data or simply that the independent increment
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assumption wasn’t appropriate to start with. The PLE estimates are given below:

µ̂ = 0.0008363,

σ̂ = 0.0119243,

θ̂ = −0.0006523,

ν̂ = 1.3369743.

In general, if we compare the pseudo-likelihood and MOM estimates from the previous ex-

ample, they seem to be at least of the same order, where σ, θ seem close while ν and µ seem

to differ. If we look at the plot comparing all three fitting examples against the empirical

log-returns 3.6, we can see that MLE estimates provided a far better fit than the both MOM

estimates. The possible explanation is that under the circumstances the approximated like-

lihood is very close to the real joint likelihood, see the conclusion section below for more

detailed explanation. In the figure 3.9c we plotted the calibrated VG densities for all three

methods. Observe that the MLE fitted plot seems the least peaked. Finally, since MLE per-

formed the best, we included other plots related to the MLE estimation, see the figure 3.10a,

3.10b, 3.10c, 3.10d.

To illustrate the fit we compared the empirical returns, VG and inferior Gaussian dis-

tribution in the figure 3.7. One can clearly see that both VG is better fitting the data

than normal distribution. So, in the figure 3.7, in addition to higher peaks than Gaussian

distribution one can observe that typical returns data has heavier tails also.

In order to illustrate the tail fit, we plotted the tails for the VG distribution, fitted by

MOM and MLE, alongside the NIG and Normal distribution, see the figures 3.8a, 3.8b.

Conclusions are similar as previously stated, i.e. that MLE method seems to does metter
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than MOM in general, and that both VG and NIG seem to be more appropriate for the data.
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Figure 3.6: Fitting of VG distribution parameter to the S&P 500 Index returns. The plot
shows the histogram of the empirical returns along with three differently calibrated VG
densities. The methods presented are VG MOM method (example 2), VG MLE method
(example3) and the Normal curve.
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Figure 3.7: Fitting VG, NIG and Normal distribution parameters to the S&P 500 Index
returns. The plot shows the histogram of the empirical returns along with three different
density.
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Figure 3.8: Tail probabilities of the Fitted VG (MOM, MLE), NIG and Normal calibrated on
the S&P 500 returns. The plot shows how three distributions fit the empirical distribution.
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Figure 3.9: Fitting of VG distribution parameters to the S&P 500 Index returns. The plot
shows three different examples explaining different methods of estimation.
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Figure 3.10: Fitting the VG distribution to the S&P 500 Index returns. The plot shows
outputs of the MLE approach.
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3.4.3 Conclusion

Based on all provided results, we see that PL (pseudo-likelihood) gives the best fit with

respect to the data at hand, which seems to be counter intuitive in this situation, see the

figure 3.6. One of the main properties of this model, is the fact that θ 6= 0 or existence of

the dependence structure of the log-returns. If we just simply disregard this by assuming

independence, one would expect to get far worse estimates, hence we would expect MOM

to be superior to the MLE. One possible explanation is that the degree of autocorrelation

for increments in the data is not as high as one would expect, i.e. that parameter θ is quite

small.

This leads us to the conclusion that, unless the data at hand is extremely skewed and/or

correlated, and in addition, interest lies in particularly estimating only the symmetry (de-

pendence parameter) (θ), then pseudo-likelihood estimation is probably the best bet. Note,

however that such highly skewed and dependent data one is not very likely to encounter in

practice, the data we worked with are particularly realistic values of actual stock prices.

Even thought the results are somewhat surprising, even more so provided that in the non-

independence case pseudo-likelihood has theoretical drawbacks. Provided that the maximum

likelihood is the superior estimation method for the independent data, it seems that, at least

for the cases considered, the dependence structure did not impose the true empirical joint

density to be sufficiently different from the product of marginal densities in order to cause

the MOM method to perform better than the MLE.
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Appendix A

Mixing Coefficients and some

important results

Let’s denote α(t) a strong mixing coefficient and β(t) a β-mixing coefficient or absolute

regularity, see Bradley (2008) [13], as following:

α(t) = sup|P (A ∩B)− P (A)P (B)|, A ∈ Fs, B ∈ Fs+t

and

β(t) = sup|P (A/B)− P (A)P (B)|, A ∈ Fs, B ∈ Fs+t,

where Fs = σ(Y (s) : s ≤ t), Ft = σ(Y (s) : s ≥ t), for any t ≥ 0.

Below we present a very important result on mixing, suggested in Davydov, [18].

Theorem A.0.1 (Davydov). Let Yt satisfy strong mixing conditions, i.e. α(t)→, as t→∞.

Let also E|Y0|2+σ = τ2+σ < ∞ and
∑
n α(n)σ/2(2+σ) = C < ∞ for some σ > 0. Now,

if σ2
n = V ar

(∑n−1
j=0 Yn

)
→ ∞, then we have Xn

Fdd→ W (t), as n → ∞ where Yn(t) is an

interpolation process on [0, 1] and W (t) is a Brownian motion.
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Appendix B

Financial prerequisites

Financial instruments

In this section, we give a brief overview of the basic financial instruments. There are dif-

ferent ways in which companies can raise funds for working capital and capital expenditures.

One is raising capital by equity financing. It refers to the sale of an ownership interest in a

company by selling shares/stocks. The value of the company’s shares typically reflects the

value of real assets of the company along with its earning power. Another way of financing is

called debt financing and it occurs when a firm raises money by selling bonds, bills or notes

to individuals and institutional investors. The investors or creditors, in return for lending

the money receive a promise that both, principal and interest on the debt will be repaid at

some specified time in the future.

Below we give definitions of most commonly used instruments in the market.

Definition B.0.1. A stock (also known as share or equity) is a type of security that provides

partial ownership1 in a company and holder of a stock (or shareholder) has a claim on part

of companies assets and earnings.

Definition B.0.2. A stock index is a measure that follows a value of a portfolio of stocks

that are representing the overall or only a portion of the market2.

1The level of ownership is determined by the ratio of shares held relative to number of shares outstanding.
2Typically, depending on what sector of the stock market one is interested in, a smaller sample of stocks

is selected as a good representative of the whole and used to track the performance of that sector.
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Ideally, a change in the index price should be proportional to a change in the price of the

stocks included. In the past, the price of the stock market index used to be calculated as

an average of the stock prices included, while nowadays weighted average is used with either

price-based3 weighing or most commonly used, market capitalization4 based weighing.

Keep in mind that the stock index is nothing more than a list of stocks and that any-

body can create one. The most commonly known indices are Dow Jones Industrial Average

(DJIA), Standard and Poor’s 500 (S&P 500), Nasdaq Composite, etc. DJIA is one of the

most recognized indices and it used to be referred to as ”the market”. It contains 30 of the

most largest and influential companies in the U.S. On the other hand, the S&P 500 index

contains 500 most widely held companies in the U.S., which makes it a better representative

of the entire U.S. stock market and is commonly used as a market benchmark.

Modeling assumptions

Models that we used in the thesis have common underlying assumptions about the mar-

ket, its participants and mathematical structure of the price processes. In this section we’ll

give a brief overview and rationale behind these. In every model, we assumed a simplistic

market framework which states that only two assets are traded continuously in the market, a

risky and a riskfree asset. Hence, a first group of assumptions is related to risky instruments

and is frequently referred to as: set of ”frictionless market assumptions” while other set of

assumptions is associated with the riskfree asset itself.

3very susceptible to stock splits that in turn affect a company’s weight in the index.
4Also referred to as ”Market Cap”. It is the total dollar market value of company’s outstanding shares.

It is calculated by multiplying the shares outstanding of a company with the current market price of one
share.
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Frictionless market assumptions:

1. No transaction costs:

By transaction costs we consider broker’s commission, bid/ask spread, taxes, margin

requirements, etc. Note that this is not as strong assumption as it seems, since most of

the above requirements are satisfied for large market participants and financial

institutions. This makes it a very reasonable approximation to reality.

2. Perfectly liquid markets:

This assumption implies that it is possible to trade any amount or fraction of a financial

instrument available on the market, at any given time. More precisely, it is a market

with large number of bid and ask offers, low spreads and also lower volatility. In these

markets it is straightforward to execute a trade at any desirable price and quickly since

there are numerous buyers and sellers. Also, relative changes in supply and demand have

a small impact on the price of an instrument. The opposite of a liquid market is often

called a thin or illiquid market. An example of a perfectly liquid market is a market for

the stock of a Fortune 500 company or the forex market which is considered the largest

and the most liquid market. The above assumption of a perfectly liquid market is well

justified considering that, we are modeling stocks from the Fortune 500 companies for

which demand and supply is very high.

3. No restrictions nor penalties or fees on short sales:

In February 2010, Securities and Exchange Commission (SEC) adopted a new short sale

price restriction, which is commonly referred to as an alternative uptick rule5, designed

5The uptick rule or a short sale rule was put in place in the period from 1938 till July 2007 as a way to
control a declining market, since at that time mechanisms and liquidity couldn’t be guaranteed to prevent
panic stock declines or any type of manipulation. The rule states that stocks could be shorted only on an
uptick (last share price higher than the one before) or a zero-plus tick (last trade is the same as the previous
one which was an uptick) and not on a downtick. However, the naked shorting, or selling the shares that
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to preserve investor confidence and promote market efficiency, as short selling can poten-

tially have both a beneficial and a harmful impact on the market. The alternative uptick

rule is put in order to restrict short selling from further driving down the price of a stock

that has dropped more than 10 percent in one day compared to the closing price on the

previous day. Once the circuit breaker6 is triggered, it will give an advantage to long

sellers over short sellers so they can sell their shares and get out of their positions before

the price drops down even further.

4. No transaction delays:

This means that trading is continuous, i.e. that markets never close and there is no delay

in execution of the trades. Note that with this assumption we are excluding high-

frequency trading as a possibility.

5. No default risk:

The risk of failure of a company or bankruptcy along with other risks that are due to

economic and political activity are ignored for simplicity. This makes an assumption

of equal compounded interests rates for borrowing and lending a plausible assumption.

6. Competitive markets (market participants act as price takers)

Price takers are individuals and companies who don’t have enough market share to

influence market price on their own, so they have to accept the current available spot

price. This means that market is not influenced by trading of individuals and even large

amounts of trading of one participant cannot influence the pricesin the market. In

addition, we assume that brokers accept all trades.

7. Rational agents (market participants prefer more to less)

can’t be verified is still forbidden.
6Also know as collars are control measures approved by SEC in order to prevent panic sellouts on the

U.S. stock exchange and to manage excessive volatility in the market.
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This is a relatively weak assumption, since it doesn’t impose anything on the preferences

and beliefs of the market participants except that they are rational in sense that they

prefer more money for the same services.

8. No arbitrage

The rationale behind this assumption is: if there exists such a contract in the market

that offers ”something for nothing” (also known as a ”free lunch”) then the simple

principle of supply and demand would force the price to converge to an equilibrium price.

Riskfree asset assumptions:

Second set of assumptions is concerned with a riskless asset or a bank account and it assumes

the following list of conditions:

1. As mentioned previously, our market framework consists of two assets: a stock as a risky

and a bank account as a riskless asset. Instead of a stock one can use an index and

instead of a bank account one can use a riskfree bond. Also, it is assumed that in the

market all investors are allowed to trade continuously up to a fixed finite time horizon T .

2. A bank account Bt is assumed to grow exponentially as it is described by the following

differential equation: dBt/Bt = rdt, /, r ≥ 0. In other words, we assume that the

continuously compounded rate of return for asset Bt is r, where r is deterministic and

constant.

3. It is assumed that investors can deposit and borrow money at the same interest rate, i.e.

borrowing and lending rates are equal to the riskfree rate of return r.
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Probability setup

Even though in practice, stock prices are observed only when the exchange is open and

the prices are restricted to discrete values (often multiples of 0.01 dollars), we use continuous

time stochastic process with continuous realizations to model a stock price evolution. Hence,

we will model the price process of our asset by a continuous-time stochastic process {St :

0 ≤ t ≤ T}, where St gives us the price of a stock at time t ≥ 0.

Let (Ω,F , P ) be a probability space. We assume that Ω is set of all possible outcomes

that we are interested in, eg. set of all possible outcomes for one stock. F contains the set

of all events we would like to evaluate, eg. find how probable is the event that the stock

price will be above $100. The probability measure P is a measure that reflects everything

that happens in the market, including both, investors’ personal belief about the price and

their risk preference, i.e. measure P includes investors’ individual biases. Example is given

below.

Example B.0.1. When one is deciding whether to go long or short with a certain stock,

they would like to know what are the chances of a stock increasing or decreasing. So, they

will first look at the historical data to see if there are any increasing/decreasing trends which

will provide an initial belief about the distribution of up and down movements. Second, they

will look at how volatile the stock was in the past and based on their risk preference they

will adjust their initial probabilities. To summarize, based on historical data and their risk

preference they will construct a subjective probability measure they will use to make decisions.

Remark B.0.1. Notice, the investor’s risk preference, risk averse versus risk seeking is

an important factor in both, when building an investment portfolio and when pricing an

instrument with the same return value but different levels of risk. As such, the risk preference
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has a strong influence on investors’ decision making process and therefore it is reflected in

the overall market probability measure P .
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