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   Abstract—Multivariate medians can be considered as data 
centrality, i.e. as a data set that is placed in the center of the data 
cloud.

 
Its usage is very important in distribution-free methods. 

Data centrality computation is very demanding even for low 
dimension datasets. In this paper we are presenting an algorithm

 and its implementation
 

for data centrality
 

calculation. The 
algorithm complexity is O(pn2 + n2 logn)

 
where n

 
is the data 

set size and p
 
is the number of dimensions. Experiments show

 that algorithm is much faster than other implemented algorithms 
and it can accept thousands of multidimensional observations, 
since the other algorithms are tested with many two-dimensional 
observations or with a couple of hundreds multidimensional 
observations. 
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I.
 

INTRODUCTION

 Every data analysis requires
 
good understanding of how the 

data is spread over the data cloud. Sometimes it’s not feasible 
to determine data distribution, so in that cases distribution-
free methods represent the only way to describe the data. 

 The typical parameters used for representing
 
the data are 

mean and variance, and sometimes mean are good enough to 
describe data centrality, but median is more robust since it’s 
less sensitive to outliers and heavy-tailed distributions. 
Robustness is one of the main medians’ properties. In order to 
illustrate how important it is, this simple example would be 
sufficient: it is enough to place one outlier to change the 
mean, but to change the median in one dimension up to one 
half of the data can be changed without affecting the median.

 Median computation in one dimension only requires to sort 
the input data. If we choose quick sort algorithm it requires 
O(n logn)

 
complexity. To obtain the median itself, we need 

to pick the element in the middle of the sorted data set and it 
requires O(1)

 
complexity, which means that complexity of 

median calculation in one dimension yields O(n logn)
complexity.
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In multidimensional cases, when the data set is 
multidimensional, the complexity is changed and it requires 
more resources to be obtained, so the algorithm complexity 
grows.  

There are different methods and algorithms for calculating 
multidimensional median. One of the most popular methods is 
Tukey depth or half-space depth introduced by John Tukey 
[1].  

In this paper we are presenting an algorithm based on 
Jensens’ inequality in context of multivariate medians [2]. 

Section II deals with elementary definitions and notions of 
half-space depth.  

Section III describes the algorithm propsed in [2]. 
In section IV we present algorithm implementation and its 

output. 
Section V compares other algorithms, their complexities 

and performances, for those that are implemented, with the 
algorithm we’re presenting.   

II. HALF-SPACE DEPTH DEFINITIONS AND NOTIONS 
For multivariate data Tukey’s half-space depth is one of the 

most popular depth functions in the literature. The Tukey 
median, i.e. the multivariate median associated with the half-
space depth, is also a well-known measure of center for 
multivariate data.  

There are several definitions of half-space depth and we 
consider some of them.  

In p dimensions, the half-space location depth of a point θ  
relative to a data set is denoted as ldepth(θ;Xn ) . It is defined 
as smallest number of observation in any closed half-space 
with boundary through θ .  

In the univariate setting ( p = 1 ) , this definition becomes: 
 

ldepth1(θ;Xn ) = min(#{xi ≤θ},#{xi ≥θ}) .       (1) 
 

The multivariate ldepth can be seen as the smallest 
univariate ldepth  of θ relative to any projection of the data 
set onto a direction u , since 

 
ldepth(θ;Xn ) = min||u||=1 ldepth1(u 'θ;u 'Xn )

= min||u||=1#{i;u 'xi ≤ u 'θ}
                         (2) 

 
In words, ldepth(θ;Xn )  says how deep θ  lies in the data 
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cloud [4][3]. 
Another definition concerns the data distribution, i.e. given 

a probability distribution P defined in a multidimensional 
space X , a depth function tries to order data in X from the 
center of P to the outer of P . In other words, if data is 
moved towards the center of data cloud, then its depth 
increases and if the data is moved towards the outside, then its 
depth decreases.  

In the one dimensional case, the points are ordered by the 
function: 

x→ D1(x,P) := min{P(−∞, x],P[x,∞)} .       (3)  

If  x ∈! p then the half-space depth of point x with respect 
to P , DT (x,P) , is the minimal probability that can be attained 
in the closest half-space that contains x [6][11], i.e. 
 

 DT (x;P) = infH {P(H ) :H a closed halfspace in !d : x ∈H} .  (4) 
 

   The following definition considers half-space depth as a 
given set P of n points in  !

d  [7]. The half-space depth of a 
point  q∈!

d is defined as: 
 
min{| P∩γ | : over all halfspaces γ containing q} .  (5) 
 

For every of those definitions the same properties can be 
applied [3]: 

• Affine invariance – depth of a point  x ∈!d should 
not be dependent on underlying coordinate system. 

• Vanishing at infinity – the depth of point x  should 
approach to zero as its norm approaches infinity, i.e. 
D(x,P)→ 0, || x ||→ 0 . 

• Maximality at center – for a symmetric distribution 
the maximum value of depth should be attained at its 
center.  

• Monotonicity relative to the deepest point – as a 
point  x ∈!d moves from a deepest point along some 
fixed ray, its depth should decrease monotonically. 

The term “center” at third point is used to denote point of 
symmetry – we can say that a random vector X is half-space 

symmetric around θ if P(X ∈H ) ≥ 1
2

 for every closed half-

space H containing θ . 
In addition to these properties, one of the most the most 

cited is breakdown property [3]. In Section I we mentioned 
advantage of the median relative to the mean value. That 
advantage describes in short breakdown property. The 
breakdown value is a measure of the robustness of an 
estimator against outlying observations. It indicates the 
smallest fraction of incorrect observation in the sample that 
causes the estimator to “break down”, or to take on values that 
are arbitrarily bad or meaningless. The higher the breakdown 
point of an estimator, the more robust it is. Half-space median 

has a breakdown point of at least 
1
p +1

in dimension p  and 

the breakdown point can be as high as 1
3

. In contrast, various 

estimators that reject apparent outliers and afterwards 
calculate the mean of the remaining observation have 

breakdown point not larger than 
n
2

⎡
⎢⎢

⎤
⎥⎥

 in dimension p .  

Since the half-space median is represented as the deepest  
point, i.e. the point with the maximum half-space depth, half-
space median is not unique point. The set of points of 
maximal depth is guaranteed to be a closed, bounded convex 
set and thanks to those three properties, half-space contains 

between n
p +1

⎡
⎢⎢

⎤
⎥⎥

 and 
n
2

⎢
⎣⎢

⎥
⎦⎥

 points [3] as consequence of 

Helly’s theorem. The maximal guaranteed depth in general is 
n
p +1

. However, if we define depths as in (6), but over 

subfamily of halfspaces that are defined by tangents planes to 
a given convex cone, then the median property is preserved, 

that is, the maximal depth is at least n
2

 [2] regardless of the 

shape of data cloud. The resulted median set in this case is not 
affine invariant in general. It is shown in [6] that for some 
symmetric distributions of data points the standard Tukey 

median has depth of n
2

. 

III. ALGORITHM FOR FINDING MULTIVARIATE MEDIANS BASED 
ON INTERSECTIONAL BALLS 

Algorithm implemented in this paper arises from theorems 
proven in [2]. We will walk through the theorems that are the 
most important for this paper. 

Theorem 3.1. Let ≼ be a partial order in ℝ! such that the 
following conditions hold: 

• Any interval 𝒂,𝒃  is topologically closed, and for 
𝒂,𝒃   ∈   ℝ𝒑 (i.e. with finite coordinates), the 
interval 𝒂,𝒃  is a compact set. 

• For any ball 𝐵   ⊂   ℝ!  , there exist 𝒂,𝒃   ∈   ℝ𝒑 such 
that 𝐵   ⊂    𝒂,𝒃 . 

• For any set 𝑆 which is bounded from above with a 
finite point, there exists a finite sup 𝑆. For any set 
𝑆 which is bounded from below with a finite point, 
there exists a finite inf 𝑆. 

Let 𝜇 be a probability measure on ℝ! and let 𝒥 be a family of 
intervals with respect to a partial order ≼, with the property 
that:  
 

𝜇 𝐽   >    !
!
, 𝑓𝑜𝑟  𝑒𝑎𝑐ℎ  𝐽   ∈   𝒥. 

 
Then the intersection off all intervals from 𝒥 is a non-empty 
compact interval.  

Furthermore, in [2] is shown that according to the 
Theorem 3.1., definition of the median is induced by partial 
order ≼ : 



 

𝑀𝑒𝑑  𝜇 ≼    ∶=    𝐽
!! 𝒂,𝒃 :! ! !  !!

  . 

 
   Theorem 3.2. (Jensen’s inequality for multivariate 
medians): Let 𝑓 be a lower semi-continuous and quasi-convex 
function on ℝ!, and let 𝜇 be an arbitrary probability measure 
on Borel sets of ℝ!. Suppose that the depth function with 
respect to halfspaces reaches its maximum 𝛼! on the set 𝐶(𝜇) 
(Tukey median set). Then for every 𝑚   ∈ 𝐶(𝜇), 
 

𝑓 𝑚 ≤ 𝑄!!!!, 
 

where 𝑄!!!! is the largest quantile of order 1 −   𝛼! for 𝜇!. 
In other words, the following statement is proven in [2]: In 

any multidimensional data set 𝒮   ∈   ℝ!, Tukey median set can 
be obtained as an intersection of all convex sets 𝑆   ⊂   𝒮 that 
has center at 𝑥   ∈   𝒮 and that contains !

!
𝑛 + 1 data points 

from 𝒮. 
In the next section we will give some implementation 

details. 

IV. ALGORITHM IMPLEMENTATION AND THE OUTPUT 
    Algorithm implementation has two major steps: 

1. Construct multi-spheres. This step has complexity 

𝑂 𝑛 ∗   !
!
∗ 𝑝 +   𝑛 ∗ 𝑛 + 𝑛 log 𝑛 ~  𝑂 𝑝𝑛! +

  𝑛! log 𝑛 .  
2. Intersect all multi-spheres from 1. in order to get a 

multivariate median. The complexity in this phase is 
𝑂(𝑛!). 

The algorithm complexity is 𝑂(𝑝𝑛! + 𝑛! log 𝑛 +
𝑛!)  ~𝑂(𝑝𝑛! + 𝑛! log 𝑛), where 𝑝 is the number of 
dimensions and 𝑛 is the number of points in the data set. 
Complexity is quadratic for any number of dimensions and it 
grows linearly when the number of dimensions increases.  

All implementations and optimizations are programmed in 
JAVA programing language. The project contains different 
data distribution generators that we are using in order to verify 
algorithm credibility and it contains a web application for data 
visualization that we have described in [5]. All graphs are 
plotted in R.   

On Figure 1. and Figure 2. are shown how 𝑛 and 𝑝 affect 
on execution times, with respect to the calculated complexity. 

Figure 3. shows dependency between number of 
dimensions and number of points in the median dataset. 

 Measurements are repeated 10 times for 𝑝 ∈ 1,… ,10  and 

for 𝑛 ∈ 40, 80, 160, 320, 640, 1280, 2560, 3000, 3500,
4000, 4500, 5000, 5500,6000, 6500, 7000    .   

 
Fig. 1.  When number  of points increases execution time grows 
exponentially. 
 

 
Fig.  2.  When number  of dimensions increases execution time grows 
linearly. 
 

 
Fig.  3.  When number  of dimensions increases execution number of points in 
the median dataset linearly decreases. 



 

 
   Finally, Figure 4. shows the median constructed from 1000 
points in 2 dimensions. Distribution is bivariate normal 
distribution and covariance matrix is identity matrix. 

 

Fig. 
 
4.  Red points from the figure represents median. Blue dots represent the 

rest of the distribution.
 

 
   

Figure 5. shows multivariate normal distribution constructed 
from 1000

 

points.

 

 
 

Fig. 

 

5.  Three-dimensional normal distribution.

 
 

Figure 6. shows median constructed from Figure 5.

 

All 
points lie between −0.2

 

and 0.2. That interval is exactly the 
center considered in Figure 5.

 

 
    Fig.  6.  Median found based on distribution represented on Figure 5. 

V. PERFORMANCES AND COMPARISIONS 
The main performed tests are based on data generated 

from multivariate normal distribution. One of the tests 
calculates the median based on data given in [8]. Namely, 
it’s daily simple returns of IBM stock from 1970 January 1st 
to 2008 December 25th. The data sample contains 9845 
points and 5 dimensions.  

There are a couple suggested algorithms in the last two 
decades. One of the first, HALFMED, was [7]. Its 
complexity is also quadratic, 𝑂(𝑛! log! 𝑛), but it construct 
Tukey median only in two dimensions. In the sake of 
execution time comparison, HALFMED takes 187.86 
seconds to find a median in 500 points, while algorithm 
proposed in this paper takes 0.246 seconds. 

The second, one of the most popular, is DEEPLOC [4]. It 
calculates Tukey median in any dimension. Its complexity 
is 𝑂(𝑘𝑚𝑛 log 𝑛 + 𝑘𝑝𝑛 +𝑚𝑝! +𝑚𝑝𝑛), where 𝑘 is the 
number of steps taken by the program and 𝑚 is the number 
of directions, i.e. vectors constructed by the program. 
Measurements in [4] go up to 1000 points and 5 
dimensions and it takes 136 seconds while algorithm 
proposed in this paper takes 0.678 seconds.  

Chan in [9] proposed an algorithm with complexity 
𝑂(𝑛 log 𝑛) for 𝑝   < 3 and 𝑂(𝑛!!!) for 𝑝   ≥ 3. This 
complexity is better for dimensions 1, 2, 3, but for 
dimension 4 its complexity is worse. The algorithm from 
[9] is not implemented.    

In [8] are proposed two algorithms implemented a couple 
months ago for 𝑝   ≥ 3. The first one has complexity 
𝑂(𝑛!!! log 𝑛) and the second one has complexity 
𝑂( !

!!!!
  𝑛!!! log 𝑛). This algorithm can be better for 

dimension 3, but for dimension 4 it’s not. For 2560 data 
points in 6 dimensions it takes 75.0221 seconds, while 
algorithm proposed in this paper takes 3.946 seconds.  

       Figure 7. and Figure 8. Shows data distribution and its 
median for IBM stock.  



 

 
 

Fig. 

 

7.  IBM stock, data distribution.

 

 
 

Fig. 

 

8.  IBM stock, median.

 
 

      

All test in his paper are tested up do 10

 

dimensions and 
7000

 

data points

 

and in the worst case it takes 46.795

 

seconds.

  

In Table I are presented computation times for higher

 

number 
of data points and higher

 

dimensions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

TABLE I 
COMPUTATION TIMES (IN SECONDS) 

 
 4    5 6 7 8 9 10 

640 0.200 0.241 0.243 0.309 0.329 0.368 0.396 

1280 0.695 0.704 0.830 0.913 0.946 0.106 0.117 

2560 2.638 2.931 3.952 3.808 4.104 4.620 4.811 

3000 3.764 4.345 4.590 4.973 5.430 5.758 6.373 

3500 5.294 5.963 6.520 7.349 8.123 9.694 10.432 

4000 7.901 8.223 9.077 10.580 11.037 13.480 13.676 

4500 8.523 9.649 10.861 11.851 12.995 14.872 16.275 

5000 10.831 12.747 14.611 16.445 18.991 19.123 19.325 

5500 12.994 14.701 17.121 18.473 23.210 24.190 23.296 

6000 17.129 17.676 19.462 22.667 25.153 27.888 33.086 

6500 21.476 22.439 23.636 28.850 28.018 29.848 31.169 

7000 24.333 24.873 28.297 36.330 38.435 38.018 46.795 

 

VI. SUMMARY 
     Described algorithm is a very fast way to compute the 
multivariate median. It can calculate multivariate median in 
many dimensions in decent time, but in this paper we tested 
algorithm up to dimension 10. Some examples with a lower 
number of points and dimensions are escaped since it takes a 
few milliseconds.  
     Further optimization will take a few steps. The first one 
will be algorithm parallelization, so it will be even faster.     
Algorithm parallelization will not decrease complexity. The 
second phase showed in Section IV has complexity that grows 
linearly with increasing number of dimensions, but with some 
optimized data structures we are currently working on, we can 
achieve that number of dimensions doesn’t affect on the 
complexity at all, so the complexity will remain the same for 
any number of dimensions. We are planning to integrate 
algorithm in web application described in [5], as well. 
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