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Abstract—We are considering the notions, properties and 
algorithms’ implementations of data depth which represents the 
median of higher dimensional data. Our main objective is to 
present the snapshot of the data depth with respect to half-space 
depth, also known as location depth or Tukey depth. Although 
the problem is NP-hard, there are ways to compute nontrivial 
lower and upper bounds of the depth. Computation of Tukey 
depth is very demanding and even for low dimension dataset, it 
requires all one dimensional projections to be considered. This is 
the reason why implementations of particular algorithms 
represent a challenge, not only in order to calculate deepest data 
location, but also in order to visualize initial data set and its 
calculated results.       

 
Keywords—Algorithms; Data depth; Tukey depth; robustness; 

Multivariate median.  
 

I. INTRODUCTION 

The motivation to generalize centrality of data is natural as 
far as there is necessity to analyze data and its behavior, found 
dependencies between observations and classify them. It helps 
to define an ordering and a version of ranks in multivariate 
data. Depending on how data is described and how its main 
properties are defined, results are different. 

There are several functions for determining data depth. All 
depth functions measure the centrality of a point q with 

respect to the data set or a probability distribution. Tukey’s 
half-space depth is one of the most popular depth functions. 
Half-space depth of a point q  relative to the data set is 

defined as the smallest number of observations in any closed 
half-space with boundary through q . The deepest location, 

i.e. the point with maximal half-space depth, is a 
generalization of median or “center” of the data. 

 Sometimes the mean is good enough to describe data 
centrality, but median is more robust since it less sensitive to 
outliers and heavy-tailed distributions. Robustness is one of 
the main median’s properties. In order to illustrate how 
important it is, this simple example would be sufficient: it is 
enough to place one outlier to change the mean, but to change 
the median in one dimension up to one half of the data can be 
changed without affecting the median.  

The Section II deals with properties of other properties of 
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medians as well as definitions and notions in multivariate 
setup. 

In Section III we present notions, meaning and construction 
of bivariate half-space median, introducing HALFMED 
algorithm. 

In Section IV we present algorithm called DEEPLOC for 
approximation the deepest location or maximal half-space 
depth in higher dimension.  

In Section V we present implementation and visualization 
of various half-space depth function using data generated 
from various distributions.   

II. HALF-SPACE DEPTH DEFINITIONS AND PROPERTIES 

For multivariate data Tukey’s half-space depth is one of the 
most popular depth functions in the literature. The Tukey 
median, i.e. the multivariate median associated with the half-
space depth, is also a well-known measure of center for 
multivariate data.  

There are several definitions of half-space depth and we 
consider some of them.  

In p dimensions, the half-space location depth of a point q  

relative to a data set is denoted as ldepth(q; Xn ) . It is defined 

as smallest number of observation in any closed half-space 
with boundary through q .  

In the univariate setting ( p =1) , this definition becomes: 

 
ldepth1(q; Xn ) = min(#{xi £q}, #{xi ³q}) .       (1) 

 
The multivariate ldepth can be seen as the smallest 

univariate ldepth  of q relative to any projection of the data 

set onto a direction u , since 
 

ldepth(q; Xn ) = min||u||=1 ldepth1(u 'q ;u ' Xn )

= min||u||=1#{i;u 'xi £ u 'q}
                         (2) 

 

In words, ldepth(q; Xn )  says how deep q  lies in the data 

cloud [4][2]. 
Another definition concerns the data distribution, i.e. given 

a probability distribution P defined in a multidimensional 
space X , a depth function tries to order data in X from the 
center of P to the outer of P . In other words, if data is 
moved towards the center of data cloud, then its depth 
increases and if the data is moved towards the outside, then its 
depth decreases.  

In the one dimensional case, the points are ordered by the 
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function: 
x® D1(x,P) := min{P(-¥, x],P[x,¥)}.       (3)  

If  x Î� p then the half-space depth of point x with respect 

to P , DT (x,P) , is the minimal probability that can be 

attained in the closest half-space that contains x [6][11], i.e. 
 

 DT (x;P) = infH {P(H ) : H a closed halfspace in � d : x ÎH} .  (4) 

 
   The following definition considers half-space depth as a 

given set P of n points in  �
d  [7]. The half-space depth of a 

point 
 qÎ� d is defined as: 

 
min{| PÇg | : over all halfspaces g containing q} .  (5)  

 
 All definitions (1), (2), (3), (4) and (5) are about the same 
depth function, half-space function. The differences are 
format and data dimensionality. For all of them the same 
properties can be applied [2]: 

 Affine invariance – depth of a point  x Î� d should 
not be dependent on underlying coordinate system. 

 Vanishing at infinity – the depth of point x  should 
approach to zero as its norm approaches infinity, i.e. 
D(x,P)® 0, || x ||® 0 . 

 Maximality at center – for a symmetric distribution 
the maximum value of depth should be attained at its 
center.  

 Monotonicity relative to the deepest point – as a 

point  x Î� d moves from a deepest point along some 
fixed ray, its depth should decrease monotonically. 

The term “center” at third point is used to denote point of 
symmetry – we can say that a random vector X is half-space 

symmetric around q if P(X ÎH ) ³
1

2
 for every closed half-

space H containing q . 

In addition to these properties, one of the most the most 
cited is breakdown property [2]. In Section I we mentioned 
advantage of the median relative to the mean value. That 
advantage describes in short breakdown property. The 
breakdown value is a measure of the robustness of an 
estimator against outlying observations. It indicates the 
smallest fraction of incorrect observation in the sample that 
causes the estimator to “break down”, or to take on values that 
are arbitrarily bad or meaningless. The higher the breakdown 
point of an estimator, the more robust it is. Half-space median 

has a breakdown point of at least 
1

p +1
in dimension p  and 

the breakdown point can be as high as 
1

3
. In contrast, various 

estimators that reject apparent outliers and afterwards 
calculate the mean of the remaining observation have 

breakdown point not larger than 
n

2

é

êê
ù

úú
 in dimension p .  

Since the half-space median is represented as the deepest 

point, i.e. the point with the maximum half-space depth, half-
space median is not unique point. The set of points of 
maximal depth is guaranteed to be a closed, bounded convex 
set and thanks to those three properties, half-space lies 

between 
n

p +1

é

ê
ê

ù

ú
ú  and 

n

2

ê

ëê
ú

ûú
 [2] as consequence of Helly’s 

theorem. The maximal guaranteed depth in general is 
d

n +1
. 

However, if we define depths as in (5), but over subfamily of 
halfspaces that are defined by tangents planes to a given 
convex cone, then the median property is preserved, that is, 

the maximal depth is at least 
n

2
 [3] regardless of the shape of 

data cloud. The resulted median set in this case is not affine 
invariant in general. It is shown in [5] that for some 
symmetric distributions of data points the standard Tukey 

median has depth of 
n

2
.  

III. BIVARIATE TUKEY MEDIAN - HALFMED 

In the case of bivariate data instead of halfspace depth, the 
term will be halfplane depth. 

The halfplane location depth of a point  q Î� 2 relative to 

the bivariate dataset X = x1, x2,..., xn{ } is the minimal number 

of observations in any closed halfplane that contains q . 

 
ldepth(q, X ) = minH #{i; xi ÎH} ,                 (6) 

 
where H ranges over all closed halfplanes of which the 
boundary line passes through q  [1]. 

   In order to calculate bivariate halfplane depth, new term is 
introduced: depth region of depth k which is considered as set 
Dk  of points q  with ldepth(q, X)³ k . In other words, Dk  is 

the intersection of all closed halfplanes that contains at least 
n - k +1  observations. It is important to note that 
D1 É D2 É D3... The boundary of Dk  is a convex polygon, 

called contour of depth k.  
   With this notion, halfplane median is defined as the q  with 

depth k* . If D
k*  is not single point, halfplane median is 

defined as the center of gravity of  D
k*  [2].     

The basic idea of HALFMED algorithm uses the median 
property of maximal, e.g. minimal value. In the case of 
bivariate data set, halfplane median takes values between 

n

3

é

êê
ù

úú
 and 

n

2

ê

ëê
ú

ûú
. Algorithm construct several regions Dk , 

where 
n

3

é

êê
ù

úú
£ k £

n

2

ê

ëê
ú

ûú
 in order to find k* for which D

k* ¹ Æ  

and D
k*+1
¹ Æ . 

1) The first step of the HALFMED algorithm is to test 

whether any two data points xi  and x j  coincide. In the same 



 

step, algorithm assigns start value for k ¬
1

2
(klower + kupper )

ê

ëê
ú

ûú
. 

2) The second step constructs Dk . The main concept is that of 

a special k-divider, represented as a direct, oriented line 
passing through two observation and dividing on that way 
data set into two parts: the first part has n - k -1  observations 
lie strictly to its left and the second part has exactly k -1 
observations lie strictly to its right. There are more than one 

special k-divider represented as Lij lines drown between xi

and x j  points. Lines are sorted according to their angles a ij , 

i.e. Lij  make angle with horizontal axis such that 0 £a ij £ p . 

This means that HALFMED starts from the projection of data 

points on the horizontal direction. Dk  is the intersection of 

the closed halfplanes to the left of all Lij  that satisfies 

condition of special k-divider. 
3) In step three, k  value is updated in the following way:  

If Dk =Æ  Þ  knew
lower ¬ kold

lower  and knew
upper ¬ k (previous).  

If Dk ¹Æ  Þ knew
lower ¬ k  and knew

upper ¬ kold
upper .  

If knew
upper - knew

lower ³ 2  Þ  k ¬
1

2
(knew

lower + knew
upper )

ê

ëê
ú

ûú
 and return to 

step 2). 

If knew
upper - knew

lower =1Þ k* = knew
lower , i.e. k* is found as well as 

corresponding D
k* . 

4) If vertices of Dk  are {y1,..., ym}, where m £ n , then the 

central point is  
 

T o =
1

m j=1

m

åy j .                                       (7) 

 

If m £ 3 the halfplane median is equal to T o . For m ³ 4
halfplane median is       

 

T * =
xI(x ÎD

k* )dl(x)ò
l(D

k* )
,                                  (8) 

 

where l  is usual measure of area. 

The algorithm HALFMED takes O(n2 log2 n)  time.  

Few months later, algorithm for the location depth of a 
point relative to a three-dimensional data set was proposed 

[10] and it takes O(n2 logn)  time. The basic idea of this 

algorithm is to connect q  according from the definition (2) 

with one of the data points xi , thus we get line L . A plane 

containing L is rotated around L  in discrete steps. Whenever 
the plane containing L  passes through some point x j  that is 

not on L , the points on both sides of plane is counted as 
required in (2). For i = 1,...,n  algorithm obtain all possible 

positions of a plain through q  in the point cloud {x1,..., xn} . 

Instead of counting number of points to the left and to the 
right for every plane and for every particular line L  (which 

takes O(n2 ) operations), algorithm constructs another plane 

g  through q  orthogonal on L  and then projects all 

observations on the plane g  and then algorithm similar to the 

HALFMED is used to count points on both sides of a discrete 
set of lines through q . For more details see Appendix of [10].   

IV. HIGH DIMENSIONAL DEEPEST LOCATION - DEEPLOC 

The deepest location, i.e. q  with the maximal half-space 

depth is a multivariate generalization of the median. Similar 
as in Section III the notion of ldepth regions are used to 
defined depth of a point q  according to (2) 

 

 Dk = {q Î� p;ldepth(q; Xn ) ³ k}.                 (9)  

For each ldepth  k  hold that Dk Í Dk-1 . The region D1  is 

equal to convex hull Xn . The boundary of each region is 

called ldepth  contour. The smallest ldepth  region, D
k* , 

represents set of all points with maximal ldepth  k*  [4].  

DEEPLOC starts from selected initial point and then takes 
carefully selected directions in order to increase the ldepth . 

1)   Initial point is selected as coordinate wise median 

M1 = (medi=1
n xi1,..., medi=1

nxip ) . 

2) Next step constructs m  directions,  u Î� p with || u ||=1 
which are randomly drawn from four classes of directions:  

 The p coordinate axes  

 Vectors connecting an observation with 
M1   

 Vectors connecting two observations 
 Vectors perpendicular to a p-subset of 

observations.  

3) The univariate ldepth  of M1 relative to the projection of 

Xn on each of these m  directions is calculated and set Umove  

of directions u  that yield the same lowest #{i;u ' xi £ u ' M1}  

is stored. Algorithm considers these as directions in which 
ldepth  can still be improved. In order to do that, algorithm 

computes average 
 

umove =
1

Umove uÎUmove

å u                   (10) 

4) Then, algorithm take step in the direction umove . The 

ldepth  attained by the deepest location relative to Xn  must 

be at least 
n

p +1

é

ê
ê

ù

ú
ú  [2]. If ldepth1(M1;u 'move Xn ) <

n

p +1

é

ê
ê

ù

ú
ú  then 

algorithm takes a step large enough to reach a point M 2  

which has univariate ldepth  
n

p +1

é

ê
ê

ù

ú
ú  in direction umove . 

Otherwise, algorithm takes step such that the univariate 
ldepth  of the resulting point M 2 in direction umove  is 1 unit 

larger than ldepth  of M1  in the same direction. Then, 



 

algorithm repeats step 2) starting from M 2 . Algorithm 

iterates until maximal halfspace depth becomes 
n

2
.  

For detailed description, see Appendix given in [4]. 
   Described algorithm has time complexity 

O(kmn log n + kpn + mp3 + mpn), where k  is the number of 

steps taken by the algorithm.  
 After taking all described steps, contours are determined. 
The Theorem 1. in [8] shows that empirical distribution of any 

dataset 
 Xn Ì � p  is uniquely determined by its halfspace 

depth function, i.e. the list of contours {D1,..., D
k* } . This 

statement represents one more important property of halfspace 
depth function called distributional property.  
   Algorithm with minimum complexity is represented in [7]. 
The algorithm is randomized and requires O(n log n)  expected 

time for n  data points, when p < 3. For p ³ 3 the expected 

time bound is O(n p-1) . This approach combines optimization 

randomized techniques and linear-programming-type 
problems. We describing algorithm in a few steps. For 
detailed description see [7]. 
 At the first step, algorithm finds points with a depth at least 
k . In further description, author switched problem to dual 
space consisting of all linear functionals (or linear forms 
defined as linear map from a vector space to its field of 
scalars, where each point from initial dataset is represented as 
vector, i.e. X = {x1,..., xp} ). By minimizing linear function 

that separates points with depth larger than k  from the points 
that have depth less then k , the output of this approach is 
subset of points that have depth at least k . 

 Furthermore, Cutting Lemma is presented in order to 
optimize algorithm. Since the initial set is switched to a dual 
space, lemma proofs that it is possible to divide set of n  
hyperplanes (output of the first step) into a constant number of 

simplices such that each simplex intersects at most anéê ùú  

hyperplanes for some constant a <1. On that way, the 
problem is divided into subproblems where each simplex 
represents a subproblem. The aim is to find maximal half-
space depth in each simplex. The cutting lemma, also known 
as cell decomposition lemma, can be defined as follows: given 

n  lines in the plane it is possible to divide it into O(r 2 )  

regions (even triangles) for any 1£ r £ n  such that interior of 

any region is intersected by O(
n

r
) lines, i.e. there are 

1

r
 (a ) 

cuttings.   
 After dividing the space on the subspaces (subproblems or 
simplices), the next step is maximizing k  in each simplex. 

 This algorithm combines two techniques: in the first step, 
dataset is pruned and this is close to the prune-and-search 
technique described in details in [17]. The cutting lemma in 
the context of finding maximal half-space depth is most 
similar to the divide-and-conquer technique represented in 
[18].             

V. IMPLEMENTATION AND VISUALIZATION 

  For the purpose of demonstrating the DEEPLOC 
algorithm, we have implemented following: 

 Multivariate normal random generator for 
generating test dataset in Java programming 
language 

 Multidimensional implementation of DEEPLOC 
algorithm in Java programming language 

 Web interface for visualizing both generated 
random dataset and results of DEEPLOC 
algorithm over the selected pairs of variables 
(dimensions) 

Random dataset from multivariate normal distribution 
was generated so we could also test DEEPLOC algorithm 
implementation on neutral random dataset, however, this 
implementation could be used against any other dataset. 

 
 
Figure 1.  Bivariate normal random dataset visualization example 

 
Dataset from multivariate normal distribution was 

generated using the random vectors from uniform 
distribution using the inverse transform sampling. Vectors 
from uniform distribution were generated using the 
combined multiple recursive generator algorithm (CMRG) 
[13] implemented in SSJ Java library using COLT library 
for fast matrix operations.   

DEEPLOC algorithm was also implemented in Java 
language and can be used with either random vectors 
generated using the web application, or use dataset stored in 
database. We have been using simple model stored in 
MongoDB that can be used to store both datasets and end 
results of DEEPLOC algorithm. Application is further 
extensible to support any other depth algorithm and will be 
used to further explore options to efficiently find data depth 
on multi-dimensional data. 

Both data generator and DEEPLOC algorithm 
implementation are exposed as RESTful web services and 
since it’s completely decoupled from web application they 
can be used independently for generating various 



 

distributions and interfacing data depth calculation from 
other applications using RESTful HTTP interface and 
utilizing simple JSON messages that contain the 
data/vectors. 

We have developed web application encouraged by John 
Tukey’s PRIME-9 [14], and as he has said: “Picturing of 
data is the extreme case. Why do we use pictures? Most 
crucially to see behavior we had not explicitly anticipated 
as possible—for what pictures are best at is revealing the 
unanticipated; crucially, often as a way of making it easier 
to perceive and understand things that would otherwise be 
painfully complex. These are the important uses of 
pictures.” [9] 

Our web application was implemented using AngularJS 
and simple Ruby Sinatra backend for routing the requests to 
adequate services and charts have been generated using 
D3.js library. 

 

 
Figure 2.  Diagram of demo application infrastructure  

 
Top level architecture diagram of demo application can 

be seen on Figure 2. together with relationships between 
general components of demo application. 

 

VI. SUMMARY 

In this article we have listed all known half-space 
definitions as well as their explanations. Furthermore, we 
have represented some of main half-space properties that 
are used widely in order to proof any other property. Also, 
we have explained some of half-space algorithms: 
HALFMED, algorithm for finding half-space depth in three 
dimensions, DEEPLOC and optimal randomizes algorithm 
for finding half-space depth in higher fixed dimensions. At 
the end, we’re implemented DEEPLOC with intention to: 

 Dataset management interface – for easier 
importing and management of external datasets; 

datasets other than those generated with Data 
Generator interface have to be imported manually 
into MongoDB database 

 Data Generator support for various distributions – 
random vectors are currently being generated only 
from multivariate normal distribution, while we 
might want to test depth algorithm(s) on other 
distributions 

 Depth Calculator support for various algorithms – 
we have currently implemented only DEEPLOC 
algorithm, but same framework could be used to 
test various other depth function algorithms and 
compare both efficiency and quality of results.  
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